[leetcode]Next Greater Element

第一题:寻找子集合中每一个元素在原集合中右边第一个比它大的数。数组

想到了用哈希表存这个数的位置,可是没有想到能够直接用哈希表存next great,用栈存还没找到的数,没遍历一个数就考察栈中的元素小,小的话,这个数就是栈中数的next great,栈中的数确定是下大上小。ui

public int[] nextGreaterElement(int[] nums1, int[] nums2) {
         /*
        经过map创建当前元素和其next great的映射
        在创建映射时,用栈记录尚未映射(就是尚未找到next great)的数,每新遍历一个数,就考察栈顶元素能不能映射,能就
        创建映射,弹出栈顶,并继续考察新栈顶。不能创建后,压入该数。
        一开始不明白,会不会有下边小,上边大的状况,若是有这种状况的话,下边的数是创建不了映射的,可是想了想是不可能出现的,
        由于每当有大的数的时候,小的会被弹出,大的会压入,因此栈顶是最小的数。
         */
        Stack<Integer> st = new Stack<>();
        Map<Integer,Integer> map = new HashMap<>();
        int[] res = new int[nums1.length];
        for (int num :
                nums2) {
            while (!st.isEmpty() && st.peek() < num)
            {
                map.put(st.peek(),num);
                st.pop();
            }
            st.push(num);
        }
        for (int i = 0; i < res.length; i++) {
            res[i] = map.getOrDefault(nums1[i],-1);
        }
        return res;
    }

 

 

第二题:和第一题的不一样点是此次是求一个循环数列中各个元素的next,并且可能有重复spa

循环的解决方法是遍历两轮,每次下标对n取余,这样两轮的下标就相同了code

重复的解决方法是stack记录下标,而不是记录数据,每次有了next,直接存到res的相应位置blog

最后的res就至关于一个哈希表字符串

public int[] nextGreaterElements2(int[] nums) {
        /*
        相对第一题的改变时数组成了循环数组,遍历到最后一个数以后能够再从第一个数开始
        本身想的方案是暴力解,两层for
        看了答案,这种循环数组遍历,下标的问题是用取余的方法,第二遍第1个数,至关于n+1个数,n+1%n = 1,正好是第一个数
        之后赶上循环数组,就遍历两倍长度,%n取余后,两次遍历的下标就同样了
         */
        int l = nums.length;
        int[] res = new int[l];
        //有的找不到,直接初始化数组为-1
        Arrays.fill(res,-1);
        Stack<Integer> st = new Stack<>();
        //循环数组,遍历两倍长度的数组,每次都取余,这样每一个元素均可以把它先后的元素都遍历到,对于第二轮遍历下标不对应的解决方法是
        //取余,对n取余,下表就对应了。时间复杂度O(2n)
        //还要考虑此次有重复,因此不能记录数,要记录下标
        for (int i = 0; i < 2*l; i++) {
            int num = nums[i%l];
            while (!st.isEmpty() && nums[st.peek()] < num)
            {
                res[st.peek()] = num;
                st.pop();
            }
            //只在第一轮遍历时记录下标
            if (i<l) st.push(i);
        }
        return res;
    }

 

 

第三题:找全排列的下一个数,以前作过,可是没作出来,f**kget

public int nextGreaterElement3(int n) {
        /*
        没作出来
        策略是:若是从第K为到末尾是递减的,且第k位大于第K-1位(也就是递减序列最高位是k),那么就倒序排列递减序列,而且找到
        比k-1为大的那个最小数,交换位置
        以前作过一个题,找全排列的下一个数,和这个如出一辙
         */
        String str = n+"";
        int l = str.length();
        if (l == 1)
            return -1;
        //注意这里k的初始值不是0,是l-1。由于是倒着开始判断,若是没有判断到则k不会改变,递减数列应该是从l-1开始,也就是最后一个数
        int k = l-1;
        //处理成数列好操做,StringBuilder也能够
        char[] ch = str.toCharArray();
        //找到递减数列开始的地方
        for (int i = l-2; i >=0; i--) {
            if (ch[i] < ch[i+1])
            {
                k = i+1;
                break;
            }
        }
        //翻转递减数列,这里也能够转为字符串用string自带的翻转
        for (int i = k; i < k+(l-k)/2; i++) {
            char temp = ch[i];
            ch[i] = ch[l-1-(i-k)];
            ch[l-1-(i-k)] = temp;
        }
        //更换位置
        for (int i = k; i < l; i++) {
            if (ch[i] > ch[k-1])
            {
                char temp = ch[i];
                ch[i] = ch[k-1];
                ch[k-1] = temp;
                break;
            }
        }
        String res = new String(ch);
        //判断是否是超过了int最大值
        Long a = Long.parseLong(res);
        if (a >Integer.MAX_VALUE)
            return -1;
        int b = Integer.parseInt(res);
        //若是数没有改变说明这个数是全排列中最大的数,没有下一个,输出-1,要判断一下
        if (b == n)
            return -1;
        return b;
    }
相关文章
相关标签/搜索