局部加权线性回归(Locally weighted linear regression)

  首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合。 对于上面三个图像做如下解释: 选取一个特征,来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比较大 针对第一个,我们增加了额外的特征,,这时我们可以看出情况就好了很多。 这个时候可能有疑问,是不是特征选取的越多越好,维度越高越好呢?所以针对这个疑问,如最右边图,我们用5揭多项式使得数据点都
相关文章
相关标签/搜索