JavaShuo
栏目
标签
Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction
时间 2021-01-13
标签
推荐系统
人工智能
序列建模
行为分析
繁體版
原文
原文链接
本文主要记录了这篇文章的主要方法和贡献,以及个人的一些思考和想法,欢迎讨论! 最开始是在语雀写的,导出后可能格式有点问题,欢迎移步语雀: https://www.yuque.com/docs/share/fee366de-68ba-4254-9a57-cccfe3edd356?# Alibaba, KDD 2019 https://arxiv.org/abs/1905.09248 Cont
>>阅读原文<<
相关文章
1.
Paper Notes: Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommenda
2.
ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation 详解
3.
What’s a Good Clickthrough Rate? New Benchmark Data for Google AdWords
4.
《User Modeling with Neural Network for Review Rating Prediction》评论打分预测
5.
#Paper Reading# Deep Interest Network for Click-Through Rate Prediction
6.
Deep Interest Network for Click-Through Rate Prediction
7.
论文Disguise Adversarial Networks for Click-through Rate Prediction
8.
IJCAI 2018 Long-Term Human Motion Prediction by Modeling Motion Context and Enhancing Motion Dynamic
9.
Controllable Multi-Interest Framework for Recommendation
10.
『 DSSM』A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
更多相关文章...
•
Swift for 循环
-
Swift 教程
•
Scala for循环
-
Scala教程
•
RxJava操作符(一)Creating Observables
•
RxJava操作符(六)Utility
相关标签/搜索
sequential
modeling
prediction
long
rate
practice
behavior
user
5.rate
unity+behavior
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸载与安装
2.
Unity NavMeshComponents 学习小结
3.
Unity技术分享连载(64)|Shader Variant Collection|Material.SetPassFast
4.
为什么那么多人用“ji32k7au4a83”作密码?
5.
关于Vigenere爆0总结
6.
图论算法之最小生成树(Krim、Kruskal)
7.
最小生成树 简单入门
8.
POJ 3165 Traveling Trio 笔记
9.
你的快递最远去到哪里呢
10.
云徙探险中台赛道:借道云原生,寻找“最优路线”
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Paper Notes: Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommenda
2.
ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation 详解
3.
What’s a Good Clickthrough Rate? New Benchmark Data for Google AdWords
4.
《User Modeling with Neural Network for Review Rating Prediction》评论打分预测
5.
#Paper Reading# Deep Interest Network for Click-Through Rate Prediction
6.
Deep Interest Network for Click-Through Rate Prediction
7.
论文Disguise Adversarial Networks for Click-through Rate Prediction
8.
IJCAI 2018 Long-Term Human Motion Prediction by Modeling Motion Context and Enhancing Motion Dynamic
9.
Controllable Multi-Interest Framework for Recommendation
10.
『 DSSM』A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
>>更多相关文章<<