更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:http://www.javashuo.com/article/p-vozphyqp-cm.htmlpython
经过数据收集、数据预处理、训练模型、测试模型上述四个步骤,通常能够获得一个不错的模型,可是通常获得的都是一个参数收敛的模型,然而咱们模型还有超参数或不一样的核函数等,如r的非线性支持向量机的bf核或linear核;rbf核的非线性支持向量机超参数\(C、\gamma\),正则化中的\(\alpha\)。咱们模型优化一块主要是对模型超参数的优化,简而言之就是输入一组超参数,对每一个超参数对应的模型进行测试,选择这一组超参数中最优的模型。算法
网格搜索法至关于对你输入的每个参数都进行验证,而且能够设置多个超参数。数据结构
from sklearn import datasets from sklearn.svm import SVC from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import GridSearchCV iris = datasets.load_iris() X = iris.data y = iris.target # 总共有2*4=8种选择 parameters = {'kernel': ('linear', 'rbf'), 'C': [0.1, 1, 10, 100]} svc = SVC(gamma="scale") cv = ShuffleSplit(n_splits=10, test_size=0.3, random_state=1) scoring = 'accuracy' clf = GridSearchCV(svc, parameters, cv=cv, scoring=scoring) clf.fit(X, y)
GridSearchCV(cv=ShuffleSplit(n_splits=10, random_state=1, test_size=0.3, train_size=None), error_score='raise-deprecating', estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False), fit_params=None, iid='warn', n_jobs=None, param_grid={'kernel': ('linear', 'rbf'), 'C': [0.1, 1, 10, 100]}, pre_dispatch='2*n_jobs', refit=True, return_train_score='warn', scoring='accuracy', verbose=0)
clf.cv_results_.keys()
dict_keys(['mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time', 'param_kernel', 'param_gamma', 'param_C', 'params', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split3_test_score', 'split4_test_score', 'mean_test_score', 'std_test_score', 'rank_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'split3_train_score', 'split4_train_score', 'mean_train_score', 'std_train_score'])
clf.best_params_
{'C': 1, 'kernel': 'linear'}
clf.best_score_
0.9844444444444445
随机搜索法通常用于超参数过多的时候,即当一组超参数有上千上万个的时候,咱们会经过随机搜索法随机选择一部分超参数,对模型调优。通常随机搜索法会经过sklearn.model_selection.ParameterSampler方法进行采样。dom
from sklearn.model_selection import ParameterSampler from scipy.stats.distributions import expon import numpy as np np.random.seed(1) param_grid = {'a': [1, 2], 'b': expon()} # expon为指数分布,该分布取值为无数个,即param_grid有无数个参数 param_grid
{'a': [1, 2], 'b': <scipy.stats._distn_infrastructure.rv_frozen at 0x1a1772a630>}
# n_iter=4指定采样次数为4次 param_list = list(ParameterSampler(param_grid, n_iter=5)) rounded_list = [dict((k, round(v, 2)) for (k, v) in d.items()) for d in param_list] rounded_list
[{'a': 2, 'b': 5.87}, {'a': 1, 'b': 0.0}, {'a': 2, 'b': 6.95}, {'a': 1, 'b': 0.1}, {'a': 1, 'b': 0.49}]
from sklearn import datasets from sklearn.svm import SVC from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import RandomizedSearchCV iris = datasets.load_iris() X = iris.data y = iris.target # 总共有2*5*5=50种选择 parameters = {'kernel': ('linear', 'rbf'), 'C': [ 0.1, 1, 10, 100, 1000], 'gamma': [0.1, 1, 10, 100, 1000]} svc = SVC() cv = ShuffleSplit(n_splits=5, test_size=0.3, random_state=1) scoring = 'accuracy' clf = RandomizedSearchCV(svc, parameters, cv=cv, scoring=scoring, n_iter=15) clf.fit(X, y)
RandomizedSearchCV(cv=ShuffleSplit(n_splits=5, random_state=1, test_size=0.3, train_size=None), error_score='raise-deprecating', estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto_deprecated', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False), fit_params=None, iid='warn', n_iter=15, n_jobs=None, param_distributions={'kernel': ('linear', 'rbf'), 'C': [0.1, 1, 10, 100, 1000], 'gamma': [0.1, 1, 10, 100, 1000]}, pre_dispatch='2*n_jobs', random_state=None, refit=True, return_train_score='warn', scoring='accuracy', verbose=0)
clf.cv_results_.keys()
dict_keys(['mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time', 'param_kernel', 'param_gamma', 'param_C', 'params', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split3_test_score', 'split4_test_score', 'mean_test_score', 'std_test_score', 'rank_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'split3_train_score', 'split4_train_score', 'mean_train_score', 'std_train_score'])
clf.best_params_
{'kernel': 'linear', 'gamma': 1000, 'C': 1}
clf.best_score_
0.9822222222222222