- 查询语言。因为 SQL 被普遍的应用在数据仓库中,所以,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者能够很方便的使用 Hive 进行开发。
- 数据存储位置。Hive 是创建在 Hadoop 之上的,全部 Hive 的数据都是存储在 HDFS 中的。而数据库则能够将数据保存在块设备或者本地文件系统中。
- 数据格式。Hive 中没有定义专门的数据格式,数据格式能够由用户指定,用户定义数据格式须要指定三个属性:列分隔符(一般为空格、”\t”、”\x001″)、行分隔符(”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式 TextFile,SequenceFile 以及 RCFile因为在加载数据的过程当中,不须要从用户数据格式到 Hive 定义的数据格式的转换,所以,Hive 在加载的过程当中不会对数据自己进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不一样的数据库有不一样的存储引擎,定义了本身的数据格式。全部数据都会按照必定的组织存储,所以,数据库加载数据的过程会比较耗时。
- 数据更新。因为 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。所以,Hive 中不支持对数据的改写和添加,全部的数据都是在加载的时候中肯定好的。而数据库中的数据一般是须要常常进行修改的,所以可使用 INSERT INTO ... VALUES 添加数据,使用 UPDATE ... SET 修改数据。
- 索引。以前已经说过,Hive 在加载数据的过程当中不会对数据进行任何处理,甚至不会对数据进行扫描,所以也没有对数据中的某些 Key 创建索引。Hive 要访问数据中知足条件的特定值时,须要暴力扫描整个数据,所以访问延迟较高。因为 MapReduce 的引入, Hive 能够并行访问数据,所以即便没有索引,对于大数据量的访问,Hive 仍然能够体现出优点。数据库中,一般会针对一个或者几个列创建索引,所以对于少许的特定条件的数据的访问,数据库能够有很高的效率,较低的延迟。因为数据的访问延迟较高,决定了 Hive 不适合在线数据查询。
- 执行。Hive 中大多数查询的执行是经过 Hadoop 提供的 MapReduce 来实现的(相似 select * from tbl 的查询不须要 MapReduce)。而数据库一般有本身的执行引擎。
- 执行延迟。以前提到,Hive 在查询数据的时候,因为没有索引,须要扫描整个表,所以延迟较高。另一个致使 Hive 执行延迟高的因素是 MapReduce 框架。因为 MapReduce 自己具备较高的延迟,所以在利用 MapReduce 执行 Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。固然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优点。
- 可扩展性。因为 Hive 是创建在 Hadoop 之上的,所以 Hive 的可扩展性是和 Hadoop 的可扩展性是一致的(世界上最大的 Hadoop 集群在 Yahoo!,2009年的规模在 4000 台节点左右)。而数据库因为 ACID 语义的严格限制,扩展行很是有限。目前最早进的并行数据库 Oracle 在理论上的扩展能力也只有 100 台左右。
- 数据规模。因为 Hive 创建在集群上并能够利用 MapReduce 进行并行计算,所以能够支持很大规模的数据;对应的,数据库能够支持的数据规模较小。
免费观看超人学院公开课视频 关注超人学院微信号数据库

了解更多详情请登陆超人学院网站http://www.crxy.cn?sxy微信