Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 24945 | Accepted: 10985 |
Description数组
Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.ide
Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.this
Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.spa
Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).code
Inputorm
Outputblog
Sample Inputthree
4 3 3 2 2 1 2 3 1 2 2 2 3 1 2 2 2 1 3 1 2 2 1 1 3 3
Sample Outputip
3
Hintci
Source
都在代码里了,干/drink.jpg
/* POJ 3281 最大流 + 拆点 源点 -> food -> 牛左 -> 牛右 -> Drink -> 汇点 建图时注意将上面的全部边的容量设置为1,这样就能够保证一头牛 只吃一种食物喝一种饮料,转化以后确定就知道是最大流了 拆点技巧:为了保证同一个东西知足两个条件,则将其拆分为两个 公共边的点分别进行求解。 嘤嘤嘤,为何作完以后感受这个题其实建图也是很好想的,就是拆个点,原谅本身太差 唉,都是幻觉 */ #include <cstdio> #include <cstring> #include <queue> #include <algorithm> #include <vector> using namespace std; const int maxn=1000+5, INF = 0x3f3f3f3f; struct Edge { Edge(){} Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow){} int from,to,cap,flow; }; struct Dinic { int n,m,s,t; //结点数,边数(包括反向弧),源点与汇点编号 vector<Edge> edges; //边表 edges[e]和edges[e^1]互为反向弧 vector<int> G[maxn]; //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号 bool vis[maxn]; //BFS使用,标记一个节点是否被遍历过 int d[maxn]; //从起点到i点的距离 int cur[maxn]; //当前弧下标 void init(int n,int s,int t) { this->n=n,this->s=s,this->t=t; for(int i=1;i<=n;i++) G[i].clear(); edges.clear(); } void AddEdge(int from,int to,int cap) { edges.push_back( Edge(from,to,cap,0) ); edges.push_back( Edge(to,from,0,0) ); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS() { memset(vis,false,sizeof(vis)); queue<int> Q;//用来保存节点编号的 Q.push(s); d[s]=0; vis[s]=true; while(!Q.empty()) { int x=Q.front(); Q.pop(); for(int i=0; i<G[x].size(); i++) { Edge& e=edges[G[x][i]]; if(!vis[e.to] && e.cap>e.flow) { vis[e.to]=true; d[e.to] = d[x]+1; Q.push(e.to); } } } return vis[t]; } int DFS(int x,int a) { if(x==t || a==0)return a; int flow=0,f;//flow用来记录从x到t的最小残量 for(int& i=cur[x]; i<G[x].size(); i++) { Edge& e=edges[G[x][i]]; if(d[x]+1==d[e.to] && (f=DFS( e.to,min(a,e.cap-e.flow) ) )>0 ) { e.flow +=f; edges[G[x][i]^1].flow -=f; flow += f; a -= f; if(a==0) break; } } return flow; } int Maxflow() { int flow=0; while(BFS()) { memset(cur,0,sizeof(cur)); flow += DFS(s,INF); } return flow; } }Dinic; int main() { int n, f, a, b, c, d; scanf("%d %d %d", &n, &f, &d); int s = n * 2 + f + d + 1, t = s + 1; Dinic.init(n, s, t); for(int i = 1; i <= f; i ++) {//n * 2 - 1 ~ n * 2 + f - 1存储从s -> 食物的边 Dinic.AddEdge(s, n * 2 + i, 1); } for(int i = 1; i <= d; i ++) {//n * 2 + f ~ n * 2 + f + d - 1存储从饮料 -> t的边 Dinic.AddEdge(n * 2 + f + i, t, 1); } for(int i = 1; i <= n; i ++) { Dinic.AddEdge(i ,n + i, 1);//牛拆点以后的创建的边1 ~ 2 * n scanf("%d %d", &a, &b); for(int j = 0; j < a; j ++) { scanf("%d", &c); Dinic.AddEdge(n * 2 + c, i, 1);//食物与牛建边 } for(int j = 0; j < b; j ++) { scanf("%d", &c); Dinic.AddEdge(i + n, n * 2 + f + c, 1);//饮料与牛建边 } } printf("%d\n", Dinic.Maxflow());//模版最大流? return 0; }