题目描述:java
假设你正在爬楼梯。须要 n 阶你才能到达楼顶。spa
每次你能够爬 1 或 2 个台阶。你有多少种不一样的方法能够爬到楼顶呢?blog
注意:给定 n 是一个正整数。递归
示例 1: 输入: 2 输出: 2 解释: 有两种方法能够爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶 示例 2: 输入: 3 输出: 3 解释: 有三种方法能够爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
代码实现:io
递归实现斐波那契数列(报超时,可是一种思路)class
class Solution { public static int climbStairs(int n) { if (n == 1 || n == 0) { return 1; } return climbStairs(n - 1) + climbStairs(n - 2); } }
AC解法:记忆中间计算结果,避免重复计算(动态规划)cli
本问题其实常规解法能够分红多个子问题,爬第n阶楼梯的方法数量,等于 2 部分之和方法
爬上 n-1阶楼梯的方法数量。由于再爬1阶就能到第n阶
爬上 n-2 阶楼梯的方法数量,由于再爬2阶就能到第n阶
因此咱们获得公式 dp[n] = dp[n-1] + dp[n-2
同时须要初始化 dp[0]=1 和 dp[1]=1im
class Solution { public int climbStairs(int n) { int[] fac = new int[n + 1]; fac[0] = 1; fac[1] = 1; if (n == 1 || n == 0) { return fac[n]; } for (int i = 2; i <= n; i++) { fac[i] = fac[i - 1] + fac[i - 2]; } return fac[n]; } }
时间复杂度:O(N)static
空间复杂度:O(N)