在Ignite中使用k-最近邻(k-NN)分类算法

在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另外一个机器学习算法,即k-最近邻(k-NN)分类。该算法基于对象k个最近邻中最多见的类来对对象进行分类,可用于肯定类成员的关系。java

一个适合k-NN分类的数据集是鸢尾花数据集,它能够很容易地经过UCI网站得到。python

鸢尾花数据集由150个样本组成,来自3种不一样种类的鸢尾花各有50朵(Iris Setosa, Iris Versicolour和Iris Virginica)。如下四个特征可供每一个样本使用:算法

  • 萼片长度(cm)
  • 萼片宽度(cm)
  • 花瓣长度(cm)
  • 花瓣宽度(cm)

下面会建立一个模型,利用这四个特征区分不一样的物种。app

首先,要获取原始数据并将其拆分红训练数据(60%)和测试数据(40%)。而后再次使用Scikit-learn来执行这个任务,下面修改一下前一篇文章中使用的代码,以下:dom

from sklearn import datasets
import pandas as pd

# Load Iris dataset.
iris_dataset = datasets.load_iris()
x = iris_dataset.data
y = iris_dataset.target

# Split it into train and test subsets.
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=23)

# Save train set.
train_ds = pd.DataFrame(x_train, columns=iris_dataset.feature_names)
train_ds["TARGET"] = y_train
train_ds.to_csv("iris-train.csv", index=False, header=None)

# Save test set.
test_ds = pd.DataFrame(x_test, columns=iris_dataset.feature_names)
test_ds["TARGET"] = y_test
test_ds.to_csv("iris-test.csv", index=False, header=None)

当训练和测试数据准备好以后,就能够写应用了,本文的算法是:机器学习

  1. 读取训练数据和测试数据;
  2. 在Ignite中保存训练数据和测试数据;
  3. 使用训练数据拟合k-NN模型;
  4. 将模型应用于测试数据;
  5. 肯定模型的准确性。

读取训练数据和测试数据

须要读取两个有5列的CSV文件,一个是训练数据,一个是测试数据,5列分别为:ide

  1. 萼片长度(cm)
  2. 萼片宽度(cm)
  3. 花瓣长度(cm)
  4. 花瓣宽度(cm)
  5. 花的种类(0:Iris Setosa,1:Iris Versicolour,2:Iris Virginica)

经过下面的代码,能够从CSV文件中读取数据:学习

private static void loadData(String fileName, IgniteCache<Integer, IrisObservation> cache)
        throws FileNotFoundException {

   Scanner scanner = new Scanner(new File(fileName));

   int cnt = 0;
   while (scanner.hasNextLine()) {
      String row = scanner.nextLine();
      String[] cells = row.split(",");
      double[] features = new double[cells.length - 1];

      for (int i = 0; i < cells.length - 1; i++)
         features[i] = Double.valueOf(cells[i]);
      double flowerClass = Double.valueOf(cells[cells.length - 1]);

      cache.put(cnt++, new IrisObservation(features, flowerClass));
   }
}

该代码简单地一行行的读取数据,而后对于每一行,使用CSV的分隔符拆分出字段,每一个字段以后将转换成double类型而且存入Ignite。测试

将训练数据和测试数据存入Ignite

前面的代码将数据存入Ignite,要使用这个代码,首先要建立Ignite存储,以下:网站

IgniteCache<Integer, IrisObservation> trainData = getCache(ignite, "IRIS_TRAIN");
IgniteCache<Integer, IrisObservation> testData = getCache(ignite, "IRIS_TEST");
loadData("src/main/resources/iris-train.csv", trainData);
loadData("src/main/resources/iris-test.csv", testData);

getCache()的实现以下:

private static IgniteCache<Integer, IrisObservation> getCache(Ignite ignite, String cacheName) {

   CacheConfiguration<Integer, IrisObservation> cacheConfiguration = new CacheConfiguration<>();
   cacheConfiguration.setName(cacheName);
   cacheConfiguration.setAffinity(new RendezvousAffinityFunction(false, 10));

   IgniteCache<Integer, IrisObservation> cache = ignite.createCache(cacheConfiguration);

   return cache;
}

使用训练数据拟合k-NN分类模型

数据存储以后,能够像下面这样建立训练器:

KNNClassificationTrainer trainer = new KNNClassificationTrainer();

而后拟合训练数据,以下:

KNNClassificationModel mdl = trainer.fit(
        ignite,
        trainData,
        (k, v) -> v.getFeatures(),     
// Feature extractor.

        (k, v) -> v.getFlowerClass())  
// Label extractor.

        .withK(3)
        .withDistanceMeasure(new EuclideanDistance())
        .withStrategy(KNNStrategy.WEIGHTED);

Ignite将数据保存为键-值(K-V)格式,所以上面的代码使用了值部分,目标值是Flower类,特征在其它列中。将k的值设为3,表明3种。对于距离测量,能够有几个选择,如欧几里德、汉明或曼哈顿,在本例中使用欧几里德。最后要指定是使用SIMPLE算法仍是使用WEIGHTED k-NN算法,在本例中使用WEIGHTED。

将模型应用于测试数据

下一步,就能够用训练好的分类模型测试测试数据了,能够这样作:

int amountOfErrors = 0;
int totalAmount = 0;

try (QueryCursor<Cache.Entry<Integer, IrisObservation>> cursor = testData.query(new ScanQuery<>())) {
   for (Cache.Entry<Integer, IrisObservation> testEntry : cursor) {
      IrisObservation observation = testEntry.getValue();

      double groundTruth = observation.getFlowerClass();
      double prediction = mdl.apply(new DenseLocalOnHeapVector(observation.getFeatures()));

      totalAmount++;
      if (groundTruth != prediction)
         amountOfErrors++;

      System.out.printf(">>> | %.0f\t\t\t | %.0f\t\t\t|\n", prediction, groundTruth);
   }

   System.out.println(">>> -----------------------------");

   System.out.println("\n>>> Absolute amount of errors " + amountOfErrors);
   System.out.printf("\n>>> Accuracy %.2f\n", (1 - amountOfErrors / (double) totalAmount));
}

肯定模型的准确性

下面,就能够经过对测试数据中的真实分类和模型进行的分类进行对比,来确认模型的真确性。

代码运行以后,总结以下:

>>> Absolute amount of errors 2
>>> Accuracy 0.97

所以,Ignite可以将97%的测试数据正确地分类为3个不一样的种类。

总结

Apache Ignite提供了一个机器学习算法库。经过k-NN分类示例,能够看到建立模型、测试模型和肯定准确性的简单性。

在机器学习系列的下一篇中,将研究另外一种机器学习算法。敬请期待!

相关文章
相关标签/搜索