在使用Spark BulkLoad数据到HBase时遇到如下问题:java
17/05/19 14:47:26 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 12.0 (TID 79, bydslave5, executor 3): java.io.IOException: Non-increasing Bloom keys: 80a01055HAXMTXG10100001KEY_VOLTAGE_T_C_PWR after af401055HAXMTXG10100001KEY_VOLTAGE_TEC_PWR at org.apache.hadoop.hbase.regionserver.StoreFile$Writer.appendGeneralBloomfilter(StoreFile.java:911) at org.apache.hadoop.hbase.regionserver.StoreFile$Writer.append(StoreFile.java:947) at org.apache.hadoop.hbase.mapreduce.HFileOutputFormat2$1.write(HFileOutputFormat2.java:199) at org.apache.hadoop.hbase.mapreduce.HFileOutputFormat2$1.write(HFileOutputFormat2.java:152) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$4.apply$mcV$sp(PairRDDFunctions.scala:1125) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$4.apply(PairRDDFunctions.scala:1123) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$4.apply(PairRDDFunctions.scala:1123) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1341) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1131) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1102) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745)
那么是在何时出现的呢?在运行完下面语句apache
val rdd = sc.textFile("/data/produce/2015/service.log.2017-04-24-08").map(_.split("@")).map{x => (DigestUtils.md5Hex(x(0)+x(1)).substring(0,3)+x(0)+x(1),x(2))}.map{x=>{val kv:KeyValue = new KeyValue(Bytes.toBytes(x._1),Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes(x._2+""));(new ImmutableBytesWritable(kv.getKey),kv)}} rdd.saveAsNewAPIHadoopFile("/tmp/data1",classOf[ImmutableBytesWritable],classOf[KeyValue],classOf[HFileOutputFormat],job.getConfiguration())
从报错信息来看是由于key没有按照递增的顺序进行排列,多是BloomFilter对key的排序有要求,可是咱们知道key的无序是由于spark在shuffle阶段并无像MapReduce那样强制排序,因此要解决这个问题咱们须要手动地为数据进行排序,只须要对rdd执行sortBy便可。app
下面语句是增长排序的语句,通过测试运行经过oop
val rdd = sc.textFile("/data/produce/2015/service.log.2017-04-24-08").map(_.split("@")).map{x => (DigestUtils.md5Hex(x(0)+x(1)).substring(0,3)+x(0)+x(1),x(2))}.sortBy(x =>x._1).map{x=>{val kv:KeyValue = new KeyValue(Bytes.toBytes(x._1),Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes(x._2+""));(new ImmutableBytesWritable(kv.getKey),kv)}} rdd.saveAsNewAPIHadoopFile("/tmp/data1",classOf[ImmutableBytesWritable],classOf[KeyValue],classOf[HFileOutputFormat],job.getConfiguration())