在网上看来不少关于同步锁的博文,记录下来方便之后阅读java
1、Lock和synchronized有如下几点不一样:ide
1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现,synchronized是在JVM层面上实现的,不但能够经过一些监控工具监控synchronized的锁定,并且在代码执行时出现异常,JVM会自动释放锁定,可是使用Lock则不行,lock是经过代码实现的,要保证锁定必定会被释放,就必须将 unLock()放到finally{} 中;工具
2)synchronized在发生异常时,会自动释放线程占有的锁,所以不会致使死锁现象发生;而Lock在发生异常时,若是没有主动经过unLock()去释放锁,则极可能形成死锁现象,所以使用Lock时须要在finally块中释放锁;性能
3)Lock可让等待锁的线程响应中断,线程能够中断去干别的事务,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不可以响应中断;this
4)经过Lock能够知道有没有成功获取锁,而synchronized却没法办到。spa
5)Lock能够提升多个线程进行读操做的效率。线程
在性能上来讲,若是竞争资源不激烈,二者的性能是差很少的,而当竞争资源很是激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。因此说,在具体使用时要根据适当状况选择。code
举个例子:当有多个线程读写文件时,读操做和写操做会发生冲突现象,写操做和写操做会发生冲突现象,可是读操做和读操做不会发生冲突现象。blog
可是采用synchronized关键字来实现同步的话,就会致使一个问题:接口
若是多个线程都只是进行读操做,因此当一个线程在进行读操做时,其余线程只能等待没法进行读操做。
所以就须要一种机制来使得多个线程都只是进行读操做时,线程之间不会发生冲突,经过Lock就能够办到。
另外,经过Lock能够知道线程有没有成功获取到锁。这个是synchronized没法办到的
2、ReentrantLock获取锁定与三种方式:
a) lock(), 若是获取了锁当即返回,若是别的线程持有锁,当前线程则一直处于休眠状态,直到获取锁
b) tryLock(), 若是获取了锁当即返回true,若是别的线程正持有锁,当即返回false;
c)tryLock(long timeout,TimeUnit unit), 若是获取了锁定当即返回true,若是别的线程正持有锁,会等待参数给定的时间,在等待的过程当中,若是获取了锁定,就返回true,若是等待超时,返回false;
d) lockInterruptibly:若是获取了锁定当即返回,若是没有获取锁定,当前线程处于休眠状态,直到或者锁定,或者当前线程被别的线程中断
3、下面咱们就来探讨一下java.util.concurrent.locks包中经常使用的类和接口。
1.Lock
首先要说明的就是Lock,经过查看Lock的源码可知,Lock是一个接口:
1
2
3
4
5
6
7
8
|
public
interface
Lock {
void
lock();
void
lockInterruptibly()
throws
InterruptedException;
boolean
tryLock();
boolean
tryLock(
long
time, TimeUnit unit)
throws
InterruptedException;
void
unlock();
Condition newCondition();
}
|
下面来逐个讲述Lock接口中每一个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协做一文中讲述。
在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?
首先lock()方法是日常使用得最多的一个方法,就是用来获取锁。若是锁已被其余线程获取,则进行等待。
因为在前面讲到若是采用Lock,必须主动去释放锁,而且在发生异常时,不会自动释放锁。所以通常来讲,使用Lock必须在try{}catch{}块中进行,而且将释放锁的操做放在finally块中进行,以保证锁必定被被释放,防止死锁的发生。一般使用Lock来进行同步的话,是如下面这种形式去使用的:
1
2
3
4
5
6
7
8
9
|
Lock lock = ...;
lock.lock();
try
{
//处理任务
}
catch
(Exception ex){
}
finally
{
lock.unlock();
//释放锁
}
|
tryLock()方法是有返回值的,它表示用来尝试获取锁,若是获取成功,则返回true,若是获取失败(即锁已被其余线程获取),则返回false,也就说这个方法不管如何都会当即返回。在拿不到锁时不会一直在那等待。
tryLock(long time, TimeUnit unit)方法和tryLock()方法是相似的,只不过区别在于这个方法在拿不到锁时会等待必定的时间,在时间期限以内若是还拿不到锁,就返回false。若是若是一开始拿到锁或者在等待期间内拿到了锁,则返回true。
因此,通常状况下经过tryLock来获取锁时是这样使用的:
1
2
3
4
5
6
7
8
9
10
11
12
|
Lock lock = ...;
if
(lock.tryLock()) {
try
{
//处理任务
}
catch
(Exception ex){
}
finally
{
lock.unlock();
//释放锁
}
}
else
{
//若是不能获取锁,则直接作其余事情
}
|
lockInterruptibly()方法比较特殊,当经过这个方法去获取锁时,若是线程正在等待获取锁,则这个线程可以响应中断,即中断线程的等待状态。也就使说,当两个线程同时经过lock.lockInterruptibly()想获取某个锁时,倘若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法可以中断线程B的等待过程。
因为lockInterruptibly()的声明中抛出了异常,因此lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。
所以lockInterruptibly()通常的使用形式以下:
1
2
3
4
5
6
7
8
9
|
public
void
method()
throws
InterruptedException {
lock.lockInterruptibly();
try
{
//.....
}
finally
{
lock.unlock();
}
}
|
注意,当一个线程获取了锁以后,是不会被interrupt()方法中断的。由于自己在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程当中的线程,只能中断阻塞过程当中的线程。
所以当经过lockInterruptibly()方法获取某个锁时,若是不能获取到,只有进行等待的状况下,是能够响应中断的。
而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是没法被中断的,只有一直等待下去。
2.ReentrantLock
ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是惟一实现了Lock接口的类,而且ReentrantLock提供了更多的方法。下面经过一些实例看具体看一下如何使用ReentrantLock。
例子1,lock()的正确使用方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
public
class
Test {
private
ArrayList<Integer> arrayList =
new
ArrayList<Integer>();
public
static
void
main(String[] args) {
final
Test test =
new
Test();
new
Thread(){
public
void
run() {
test.insert(Thread.currentThread());
};
}.start();
new
Thread(){
public
void
run() {
test.insert(Thread.currentThread());
};
}.start();
}
public
void
insert(Thread thread) {
Lock lock =
new
ReentrantLock();
//注意这个地方
lock.lock();
try
{
System.out.println(thread.getName()+
"获得了锁"
);
for
(
int
i=
0
;i<
5
;i++) {
arrayList.add(i);
}
}
catch
(Exception e) {
// TODO: handle exception
}
finally
{
System.out.println(thread.getName()+
"释放了锁"
);
lock.unlock();
}
}
}
|
各位朋友先想一下这段代码的输出结果是什么?
也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁以前获得了锁?缘由在于,在insert方法中的lock变量是局部变量,每一个线程执行该方法时都会保存一个副本,那么理所固然每一个线程执行到lock.lock()处获取的是不一样的锁,因此就不会发生冲突。
知道了缘由改起来就比较容易了,只须要将lock声明为类的属性便可。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
public
class
Test {
private
ArrayList<Integer> arrayList =
new
ArrayList<Integer>();
private
Lock lock =
new
ReentrantLock();
//注意这个地方
public
static
void
main(String[] args) {
final
Test test =
new
Test();
new
Thread(){
public
void
run() {
test.insert(Thread.currentThread());
};
}.start();
new
Thread(){
public
void
run() {
test.insert(Thread.currentThread());
};
}.start();
}
public
void
insert(Thread thread) {
lock.lock();
try
{
System.out.println(thread.getName()+
"获得了锁"
);
for
(
int
i=
0
;i<
5
;i++) {
arrayList.add(i);
}
}
catch
(Exception e) {
// TODO: handle exception
}
finally
{
System.out.println(thread.getName()+
"释放了锁"
);
lock.unlock();
}
}
}
|
这样就是正确地使用Lock的方法了。
例子2,tryLock()的使用方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
public
class
Test {
private
ArrayList<Integer> arrayList =
new
ArrayList<Integer>();
private
Lock lock =
new
ReentrantLock();
//注意这个地方
public
static
void
main(String[] args) {
final
Test test =
new
Test();
new
Thread(){
public
void
run() {
test.insert(Thread.currentThread());
};
}.start();
new
Thread(){
public
void
run() {
test.insert(Thread.currentThread());
};
}.start();
}
public
void
insert(Thread thread) {
if
(lock.tryLock()) {
try
{
System.out.println(thread.getName()+
"获得了锁"
);
for
(
int
i=
0
;i<
5
;i++) {
arrayList.add(i);
}
}
catch
(Exception e) {
// TODO: handle exception
}
finally
{
System.out.println(thread.getName()+
"释放了锁"
);
lock.unlock();
}
}
else
{
System.out.println(thread.getName()+
"获取锁失败"
);
}
}
}
|
输出结果:
例子3,lockInterruptibly()响应中断的使用方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
public
class
Test {
private
Lock lock =
new
ReentrantLock();
public
static
void
main(String[] args) {
Test test =
new
Test();
MyThread thread1 =
new
MyThread(test);
MyThread thread2 =
new
MyThread(test);
thread1.start();
thread2.start();
try
{
Thread.sleep(
2000
);
}
catch
(InterruptedException e) {
e.printStackTrace();
}
thread2.interrupt();
}
public
void
insert(Thread thread)
throws
InterruptedException{
lock.lockInterruptibly();
//注意,若是须要正确中断等待锁的线程,必须将获取锁放在外面,而后将InterruptedException抛出
try
{
System.out.println(thread.getName()+
"获得了锁"
);
long
startTime = System.currentTimeMillis();
for
( ; ;) {
if
(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
break
;
//插入数据
}
}
finally
{
System.out.println(Thread.currentThread().getName()+
"执行finally"
);
lock.unlock();
System.out.println(thread.getName()+
"释放了锁"
);
}
}
}
class
MyThread
extends
Thread {
private
Test test =
null
;
public
MyThread(Test test) {
this
.test = test;
}
@Override
public
void
run() {
try
{
test.insert(Thread.currentThread());
}
catch
(InterruptedException e) {
System.out.println(Thread.currentThread().getName()+
"被中断"
);
}
}
}
|
运行以后,发现thread2可以被正确中断。
3.ReadWriteLock
ReadWriteLock也是一个接口,在它里面只定义了两个方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
public
interface
ReadWriteLock {
/**
* Returns the lock used for reading.
*
* @return the lock used for reading.
*/
Lock readLock();
/**
* Returns the lock used for writing.
*
* @return the lock used for writing.
*/
Lock writeLock();
}
|
一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操做分开,分红2个锁来分配给线程,从而使得多个线程能够同时进行读操做。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。
4.ReentrantReadWriteLock
ReentrantReadWriteLock里面提供了不少丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。
下面经过几个例子来看一下ReentrantReadWriteLock具体用法。
假若有多个线程要同时进行读操做的话,先看一下synchronized达到的效果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
public
class
Test {
private
ReentrantReadWriteLock rwl =
new
ReentrantReadWriteLock();
public
static
void
main(String[] args) {
final
Test test =
new
Test();
new
Thread(){
public
void
run() {
test.get(Thread.currentThread());
};
}.start();
new
Thread(){
public
void
run() {
test.get(Thread.currentThread());
};
}.start();
}
public
synchronized
void
get(Thread thread) {
long
start = System.currentTimeMillis();
while
(System.currentTimeMillis() - start <=
1
) {
System.out.println(thread.getName()+
"正在进行读操做"
);
}
System.out.println(thread.getName()+
"读操做完毕"
);
}
}
|
这段程序的输出结果会是,直到thread1执行完读操做以后,才会打印thread2执行读操做的信息。
而改为用读写锁的话:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
public
class
Test {
private
ReentrantReadWriteLock rwl =
new
ReentrantReadWriteLock();
public
static
void
main(String[] args) {
final
Test test =
new
Test();
new
Thread(){
public
void
run() {
test.get(Thread.currentThread());
};
}.start();
new
Thread(){
public
void
run() {
test.get(Thread.currentThread());
};
}.start();
}
public
void
get(Thread thread) {
rwl.readLock().lock();
try
{
long
start = System.currentTimeMillis();
while
(System.currentTimeMillis() - start <=
1
) {
System.out.println(thread.getName()+
"正在进行读操做"
);
}
System.out.println(thread.getName()+
"读操做完毕"
);
}
finally
{
rwl.readLock().unlock();
}
}
}
|
此时打印的结果为:
说明thread1和thread2在同时进行读操做。
这样就大大提高了读操做的效率。
不过要注意的是,若是有一个线程已经占用了读锁,则此时其余线程若是要申请写锁,则申请写锁的线程会一直等待释放读锁。
若是有一个线程已经占用了写锁,则此时其余线程若是申请写锁或者读锁,则申请的线程会一直等待释放写锁。
关于ReentrantReadWriteLock类中的其余方法感兴趣的朋友能够自行查阅API文档。