操做系统版本 ubuntu18.0.4
机器树莓派4Bpython
目标安装 tensorflow linux
先看下面链接文章,下载到你须要的tensorflowgit
树莓派4B安装Tensorflow(Python3.5和3.7下分别进行安装)github
下载的版本须要和你的机器、操做系统和python版本 三者对应ubuntu
在安装tensorflow以前,须要安装一些工具,再安装一些依赖库markdown
首先安装 工具
sudo apt-get install libhdf5-dev
google
而后安装cython(不是cpython)lua
sudo pip install Cython
spa
和wheel
sudo pip install wheel
准备工做已经作好
接下来能够直接sudo pip install tensorflow-2.2.0-cp37-none-linux_aarch64.whl
pip会自动解决tensorflow的依赖库,可是其中scipy和h5py会比较缓慢
keras-preprocessing, gast, absl-py, grpcio, h5py, opt-einsum, tensorflow-estimator, termcolor, protobuf, tensorboard-plugin-wit, wheel, pyasn1, rsa, cachetools, pyasn1-modules, google-auth, oauthlib, requests-oauthlib, google-auth-oauthlib, zipp, importlib-metadata, markdown, werkzeug, tensorboard, wrapt, astunparse, google-pasta, tensorflow
这些是sudo pip install tensorflow-2.2.0-cp37-none-linux_aarch64.whl命令运行的时候检查并安装的依赖库,
若是安装的时候卡住,退出手动安装一下
sudo pip install xxxx
安装完成后
运行下面代码
import tensorflow as tf print(tf.__version__) mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test)
若是输出正常,说明tensorflow基本功能已经ok