CNN中卷积层和池化的作用和理解

承接上文对CNN的介绍[学习笔记P20-CNN],下面来看看一些细节梳理: CNN框架: 池化层(pooling layer)也叫做子采样层(subsampling layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。 为什么conv-layer之后需要加pooling_layer? 卷积层【局部连接和权重共享】虽然可以显著减少网络中连接的数量,但特征映射组中的神经元个数并没有显
相关文章
相关标签/搜索