机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

版权声明:     本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected]。也可以加我的微博: @leftnoteasy 前言:     上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在
相关文章
相关标签/搜索