JavaShuo
栏目
标签
Affordance Detection of Tool Parts from Geometric Features
时间 2020-12-30
原文
原文链接
@ICRA 2015 背景介绍 Affordence 解释:Affordence 本文提出从定位和几何原语提出两种方法学习Affordence:基于高像素的层次匹配(S-HMP)和结构化随机森林(SRF)。 S-HMP 深度特征:首先应用平滑和插值算子来减少噪声和失去的深度值。然后,从块中减去平均值获得深度绝对变化的鲁帮性。这些块直接用HMP学习层次稀疏编码字典。第一层,HMP捕捉原始结构像变化方
>>阅读原文<<
相关文章
1.
【翻译】Geometric Features-Based Parking Slot Detection
2.
Information from parts of words: Subword Models
3.
【CS224n】Lecture 12: Information from parts of words: Subword Models
4.
【cs224n-10】Information from parts of words (Subword Models)
5.
Rapid Object Detection using a Boosted Cascade of Simple Features
6.
GEOMETRIC APPLICATIONS OF BSTS
7.
hive-the summaries of features
8.
Automatic fall detection of human in video using combination of features译文
9.
[CVPR 2020] D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
10.
Comparison of SIFT Encoded and Deep Learning Features for the Classification and Detection of Esca D
更多相关文章...
•
XSLT
元素
-
XSLT 教程
•
XSLT
元素
-
XSLT 教程
•
Java Agent入门实战(三)-JVM Attach原理与使用
•
JDK13 GA发布:5大特性解读
相关标签/搜索
parts
geometric
features
tool
detection
track+detection
tool篇
for...of
for..of
import...from
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸载与安装
2.
Unity NavMeshComponents 学习小结
3.
Unity技术分享连载(64)|Shader Variant Collection|Material.SetPassFast
4.
为什么那么多人用“ji32k7au4a83”作密码?
5.
关于Vigenere爆0总结
6.
图论算法之最小生成树(Krim、Kruskal)
7.
最小生成树 简单入门
8.
POJ 3165 Traveling Trio 笔记
9.
你的快递最远去到哪里呢
10.
云徙探险中台赛道:借道云原生,寻找“最优路线”
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
【翻译】Geometric Features-Based Parking Slot Detection
2.
Information from parts of words: Subword Models
3.
【CS224n】Lecture 12: Information from parts of words: Subword Models
4.
【cs224n-10】Information from parts of words (Subword Models)
5.
Rapid Object Detection using a Boosted Cascade of Simple Features
6.
GEOMETRIC APPLICATIONS OF BSTS
7.
hive-the summaries of features
8.
Automatic fall detection of human in video using combination of features译文
9.
[CVPR 2020] D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
10.
Comparison of SIFT Encoded and Deep Learning Features for the Classification and Detection of Esca D
>>更多相关文章<<