你们对AtomicInteger的基本实现机制应该比较了解,它们是在一个死循环内,不断尝试修改目标值,知道修改为功,若是竞争不激烈,那么修改为功的几率就很高,不然,修改失败的几率就很高,在大量修改失败时,这些原子操做就会进行屡次循环尝试,所以性能就会受到影响
那么竞争激烈的时候,咱们应该如何进一步提升系统性能呢?一种基本方案就是可使用热点分离,将竞争的数据进行分解.基于这个思路,打击应该能够想到一种对传统AtomicInteger等原子类的改进方法,虽然在CAS操做中没有锁,可是像减小锁粒度这种分离热点的思路依然可使用,一种可行的方案就是仿造ConcurrengHashMap,将热点数据分离,好比,能够将AtomicInteger的内部核心数据value分离成一个数组,每一个线程访问时,经过哈希等算法映射到其中一个数字进行计数,而最终的计数结果,则为这个数组的求和累加,其中,热点数据value被分离成多个单元cell,每一个cell独自维护内部的值,当前对象的实际值由全部的cell累计合成,这样,热点就进行了有效的分离,提升了并行度,LongAdder正是使用了这种思想.
public class LongAdderDemo {
private static final int MAX_THREADS = 3;
private static final int TASK_COUNT = 3;
private static final int TARGET_COUNT = 10000000;
private AtomicLong acount = new AtomicLong(0L);
private LongAdder lacount = new LongAdder();
private long count = 0;
private static CountDownLatch cdlsync = new CountDownLatch(TASK_COUNT);
private static CountDownLatch cdlatomic = new CountDownLatch(TASK_COUNT);
private static CountDownLatch cdladdr = new CountDownLatch(TASK_COUNT);
protected synchronized long inc() {
return ++count;
}
protected synchronized long getCount() {
return count;
}
public class SyncThread implements Runnable {
protected String name;
protected long starttime;
LongAdderDemo out;
public SyncThread(long starttime, LongAdderDemo out) {
this.starttime = starttime;
this.out = out;
}
@Override
public void run() {
long v = out.getCount();
while (v < TARGET_COUNT) {
v = out.inc();
}
long endtime = System.currentTimeMillis();
System.out.println("SyncThread spend:" + (endtime - starttime) + "ms" + " v" + v);
cdlsync.countDown();
}
}
public void testSync() throws InterruptedException {
ExecutorService exe = Executors.newFixedThreadPool(MAX_THREADS);
long starttime = System.currentTimeMillis();
SyncThread sync = new SyncThread(starttime, this);
for (int i = 0; i < TASK_COUNT; i++) {
exe.submit(sync);
}
cdlsync.await();
exe.shutdown();
}
public class AtomicThread implements Runnable {
protected String name;
protected long starttime;
public AtomicThread(long starttime) {
this.starttime = starttime;
}
@Override
public void run() {
long v = acount.get();
while (v < TARGET_COUNT) {
v = acount.incrementAndGet();
}
long endtime = System.currentTimeMillis();
System.out.println("AtomicThread spend:" + (endtime - starttime) + "ms" + " v" + v);
cdlatomic.countDown();
}
}
public void testAtomic() throws InterruptedException {
ExecutorService exe = Executors.newFixedThreadPool(MAX_THREADS);
long starttime = System.currentTimeMillis();
AtomicThread atomic = new AtomicThread(starttime);
for (int i = 0; i < TASK_COUNT; i++) {
exe.submit(atomic);
}
cdlatomic.await();
exe.shutdown();
}
public class LongAdderThread implements Runnable {
protected String name;
protected long starttime;
public LongAdderThread(long starttime) {
this.starttime = starttime;
}
@Override
public void run() {
long v = lacount.sum();
while (v < TARGET_COUNT) {
lacount.increment();
v = lacount.sum();
}
long endtime = System.currentTimeMillis();
System.out.println("LongAdderThread spend:" + (endtime - starttime) + "ms" + " v" + v);
cdladdr.countDown();
}
}
public void testLongAdder() throws InterruptedException {
ExecutorService exe = Executors.newFixedThreadPool(MAX_THREADS);
long starttime = System.currentTimeMillis();
LongAdderThread atomic = new LongAdderThread(starttime);
for (int i = 0; i < TASK_COUNT; i++) {
exe.submit(atomic);
}
cdladdr.await();
exe.shutdown();
}
public static void main(String[] args) throws InterruptedException {
LongAdderDemo demo = new LongAdderDemo();
demo.testSync();
demo.testAtomic();
demo.testLongAdder();
}
}