深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld
技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同窗加入。html


最近接下来几篇博文会回到神经网络结构的讨论上来,前面我在“深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning”一文中介绍了经典的CNN网络结构模型,这些能够说已是家喻户晓的网络结构,在那一文结尾,我提到“是时候动一动卷积计算的形式了”,缘由是不少工做证实了,在基本的CNN卷积计算模式以外,不少简化、扩展、变化均可以让卷积计算得到更多特性,好比参数减小,计算减小,效果提高等等。node

接下来几篇文章会陆续介绍下面这些topic:算法

  1. Maxout Networks
  2. Network In Network
  3. Inception Net(Google)
  4. ResneXt
  5. Xception(depth-wise convolution)
  6. Spatial Transformer Networks

本文先介绍两个13,14年的工做:Maxout Networks,Network In Network。网上有很多资料,可是不少做者我相信本身都没有彻底理解,在本文中我会尽量描述清楚。本文重点在于Network In Network。本文针对论文和网络资料的整理,本身从新撰写,保证每个初学者均可以看懂。markdown

一、Maxout Network

坦白说Maxout自己并不能算卷积结构的变化,可是它提出了一个概念——线性变化+Max操做能够拟合任意的的凸函数,包括激活函数(如Relu);后面要介绍的NIN有关系,因此先介绍一下Maxout。网络

Maxout出如今ICML2013上,大神Goodfellow(GAN的提出人~)将maxout和dropout结合后,号称在MNIST, CIFAR-10, CIFAR-100, SVHN这4个数据上都取得了start-of-art的识别率。dom

从论文中能够看出,maxout实际上是一种激或函数形式。一般状况下,若是激活函数采用sigmoid函数的话,在前向传播过程当中,隐含层节点的输出表达式为:ide

这里写图片描述

通常的MLP就是这样状况。其中W通常是2维的,这里表示取出的是第i列(对应第i个输出节点),下标i前的省略号表示对应第i列中的全部行。若是是maxout激活函数,则其隐含层节点的输出表达式为:函数

这里写图片描述

这里写图片描述

这里的W是3维的,尺寸为d*m*k,其中d表示输入层节点的个数,m表示隐含层节点的个数,k表示每一个隐含层节点展开k个中间节点,这k个中间节点都是线性输出的,而maxout的每一个节点就是取这k个中间节点输出最大的那个值。参考一个日文的maxout ppt 中的一页ppt以下:tornado

这里写图片描述

这张图的意识是说,紫圈中的隐藏节点展开成了5个黄色节点,取max。Maxout的拟合能力是很是强的,它能够拟合任意的的凸函数。从左往右,依次拟合出了ReLU,abs,二次曲线。学习

这里写图片描述

做者从数学的角度上也证实了这个结论,即只需2个maxout节点就能够拟合任意的凸函数了(相减),前提是中间节点的个数能够任意多,以下图所示,具体能够翻阅paper[1]。maxout的一个强假设是输出是位于输入空间的凸集中的….这个假设是否必定成立呢?虽然ReLU是Maxout的一个特例——其实是得不到ReLU正好的状况的,咱们是在学习这个非线性变换,用多个线性变换的组合+Max操做。

这里写图片描述

二、Network In Network

OK,上面介绍了Maxout[1],接下来重点介绍一下14年新加坡NUS颜水成老师组的Min Lin一个工做Network In Network ,说实话,不管是有心仍是无心,本文的一些概念,包括1*1卷积,global average pooling都已经成为后来网络设计的标准结构,有独到的看法。

这里写图片描述
图1

先来看传统的卷积,图1左:

这里写图片描述

不少同窗没有仔细看下标的含义,因此理解上模棱两可。xij表示的是一个卷积窗口的patch(通常是k_h*k_w*input_channel),k表示第k个kernel的index;激活函数是ReLU。并非说只作一个kernel,而是指任意一个kernel。

再来看本文提出的Mlpconv Layer,也就是Network In Network,图1右。这里只是多加了一层全链接MLP层,什么意思呢?做者称之为“cascaded cross channel parametric pooling layer”,级联跨通道的带参数pooling层,目的是:

Each pooling layer performs weighted linear recombination on the input feature maps

这里写图片描述

看公式2就很清楚了,是第一层仍是传统的卷积,在作一次卷积之后,对输出feature map的中的每个像素点fij,其对应的全部channel又作了一次MLP,激活函数是ReLU。n表示第n层,而kn表示一个index,由于在第n层里面有不少kernel,和前面公式1是一个道理。因此,咱们看下面整个NIN网络就很清楚了:

这里写图片描述

看第一个NIN,原本11*11*3*96(11*11的卷积kernel,输出map 96个)对于一个patch输出96个点,是输出feature map同一个像素的96个channel,可是如今多加了一层MLP,把这96个点作了一个全链接,又输出了96个点——很巧妙,这个新加的MLP层就等价于一个1 * 1 的卷积层,这样在神经网络结构设计的时候就很是方便了,只要在原来的卷积层后面加一个1*1的卷积层,而不改变输出的size。注意,每个卷积层后面都会跟上ReLU。因此,至关于网络变深了,我理解其实这个变深是效果提高的主要因素。

举例解释

假设如今有一个3x3的输入patch,用x表明,卷积核大小也是3x3,向量w表明,输入channel是c1,输出channel是c2。下面照片是我本身手画的,比较简单,见谅:)

  • 对于通常的卷积层,直接x和w求卷积,获得1*1的1个点,有C2个kernel,获得1*1*c2;
  • Maxout,有k个的3x3的w(这里的k是自由设定的),分别卷积获得k个1x1的输出,而后对这k个输入求最大值,获得1个1*1的点,对每个输出channel都要这样作;
  • NIN,有k个3x3的w(这里的k也是自由设定的),分别卷积获得k个1x1的输出,而后对它们都进行relu,而后再次对它们进行卷积,结果再relu。(这个过程,等效于一个小型的全链接网络)

这里写图片描述

这里创建了一个概念,全链接网络能够等价转换到1*1的卷积,这个idea在之后不少网络中都有用到,好比FCN[5]。

Global Average Pooling

在Googlenet网络中,也用到了Global Average Pooling,实际上是受启发于Network In Network。Global Average Pooling通常用于放在网络的最后,用于替换全链接FC层,为何要替换FC?由于在使用中,例如alexnet和vgg网络都在卷积和softmax之间串联了fc层,发现有一些缺点:

(1)参数量极大,有时候一个网络超过80~90%的参数量在最后的几层FC层中;
(2)容易过拟合,不少CNN网络的过拟合主要来自于最后的fc层,由于参数太多,却没有合适的regularizer;过拟合致使模型的泛化能力变弱;
(3)实际应用中很是重要的一点,paper中并无提到:FC要求输入输出是fix的,也就是说图像必须按照给定大小,而实际中,图像有大有小,fc就很不方便;

做者提出了Global Average Pooling,作法很简单,是对每个单独的feature map取全局average。要求输出的nodes和分类category数量一致,这样后面就能够直接接softmax了。

这里写图片描述

做者指出,Global Average Pooling的好处有:

  • 由于强行要求最后的feature map数量等于category数量,所以feature map就会被解析为categories confidence maps.
  • 没有参数,因此不会过拟合;
  • 对一个平面的计算,使得利用了空间信息,对于图像在空间中变化更鲁棒;

这里写图片描述

Dropout

最后稍微提一下dropout,这个是hinton在Improving neural networks by preventing co-adaptation of feature detectors[9]一文中提出的。方法是在训练时,一层隐藏层输出节点中,随机选p(好比0.5)的比例的节点输出为0,而与这些0节点相连的那些权重在本次迭代training中不被更新。Dropout是一个很强力的正则方法,为啥?由于有一部分权重没有被更新,减小了过拟合,并且每一次训练能够看作使用的网络model是不同的,所以,最终全局就至关因而指数个model的混合结果,混合模型的泛化能力每每比较强。通常Dropout用于FC层,主要也是由于FC很容易过拟合。


OK,本篇就到这里,欢迎初学DL的同窗分享,有问题能够在下面留言。


参考资料

[1] Maxout Networks, 2013
[2] http://www.jianshu.com/p/96791a306ea5
[3] Deep learning:四十五(maxout简单理解)
[4] 论文笔记 《Maxout Networks》 && 《Network In Network》
[5] Fully convolutional networks for semantic segmentation, 2015
[6] http://blog.csdn.net/u010402786/article/details/50499864
[7] 深度学习(二十六)Network In Network学习笔记 [8] Network in Nerwork, 2014 [9] Improving neural networks by preventing co-adaptation of feature detectors

相关文章
相关标签/搜索