各项工具大pk,分组聚合哪家强?

各项工具大pk,分组聚合哪家强?

小小明 凹凸数据
各项工具大pk,分组聚合哪家强?ide

小小明:「凹凸数据」专栏做者,Pandas数据处理专家,致力于帮助无数数据从业者解决数据处理难题。工具

凹凸们,你们好
先看一个小需求,实际上是很常见的分组聚合问题。
各项工具大pk,分组聚合哪家强?
今天我将带你们分别使用MySQL、Excel、Pandas、VBA和Python来实现这个需求。
这么齐全的应该算是全网首发吧!固然也是为了让你们对分组聚合代码层面的实现可以更加熟悉。
各项工具大pk,分组聚合哪家强?3d

MySQL实现分组统计

SQL语句:调试

SELECT 
  deal_date,
  SUM(IF(AREA= 'A区', 1, 0)) 'A区',
  SUM(IF(AREA= 'B区', 1, 0)) 'B区',
  SUM(IF(AREA= 'C区', 1, 0)) 'C区' 
FROM
  order_info 
GROUP BY deal_date ;

结果:
各项工具大pk,分组聚合哪家强?code

Excel实现分组统计

首先建立数据透视表:
各项工具大pk,分组聚合哪家强?
而后将对应的字段拖动到正确的位置:
各项工具大pk,分组聚合哪家强?
而后打开透视表选项取消这两项勾选便可:
各项工具大pk,分组聚合哪家强?blog

Pandas进行分组统计

读取数据:ip

import pandas as pd

df = pd.read_csv("data.csv", encoding="gb18030")
df

结果:
各项工具大pk,分组聚合哪家强?
使用数据透视表操做:ci

df.pivot_table(values="order_id", index="deal_date",
               columns="area", aggfunc="count", fill_value=0)

上述代码至关于groupby操做:pandas

df.groupby(["deal_date", "area"])["order_id"].count().unstack(1, fill_value=0)

但我通常会这样写:it

df.groupby(["deal_date", "area"]).size().unstack(1, fill_value=0)

结果均为:
各项工具大pk,分组聚合哪家强?

VBA实现分组统计

通过近1小时的痛苦的尝试,终于编写出了下面这段VBA代码,它模拟实现了分组计数的过程:

Option Explicit
Function is_exists(name As String)
Dim sht As Worksheet
For Each sht In Worksheets
   If sht.name = name Then
      is_exists = True
      Exit Function
   End If
Next
is_exists = False
End Function

Sub 分组统计()
    Dim LastRow, LastCol As Long
    Dim Sh As Worksheet
    'Sh指代当前活动页
    Set Sh = Sheets("data")
    '当前活动页的最后一行
    LastRow = Sh.Cells(Rows.Count, 1).End(xlUp).row
    '当前活动页的最后一列
    LastCol = Sh.Cells(1, Columns.Count).End(xlToLeft).Column
    '定义D为字典
    Dim D As Object
    Set D = CreateObject("Scripting.Dictionary")
    Dim row, i As Integer
    Dim key, value As String

    For i = 2 To LastRow
        key = Sh.Cells(i, 3).value
        value = Sh.Cells(i, 4).value
        '若是在字典里
        If Not D.exists(key) Then
            D.Add key, Array(0, 0, 0)
        End If
        row = D(key)
        If value = "A区" Then
            row(0) = row(0) + 1
        ElseIf value = "B区" Then
            row(1) = row(1) + 1
        ElseIf value = "C区" Then
            row(2) = row(2) + 1
        End If
        D(key) = row
    Next
    '调试输出字典存储的内容
    For Each key In D.keys()
        Debug.Print key & "," & Join(D(key), ",")
    Next

    Dim sht As Worksheet
    If is_exists("result") Then
        Sheets("result").Delete
    End If

    '在最后的位置增长一个sheet做为结果表
    Sheets.Add After:=Sheets(Sheets.Count)
    Set sht = Sheets(Sheets.Count)
    sht.name = "result"

    '屏幕刷新=false
    Application.ScreenUpdating = False
    '下面写出数据到结果表中,首先写出标题行
    sht.Range("A1").Resize(1, 4) = Application.Transpose(Array("deal_date", "A区", "B区", "C区"))
    sht.Range("A2").Resize(D.Count, 1) = Application.Transpose(D.keys)
    i = 2
    For Each row In D.items()
        sht.Cells(i, 2).Resize(1, 3) = row
        i = i + 1
    Next
    Application.ScreenUpdating = True

End Sub

运行前:
各项工具大pk,分组聚合哪家强?
点击按钮运行后:
各项工具大pk,分组聚合哪家强?
当即窗口和工做表都看到了正确的结果输出,当即窗口看到重复2次的输出是由于我连续运行了两次。

Python实现分组计数

实现代码:

import csv
from collections import namedtuple

result = {}
columns = ["A区", "B区", "C区"]
areas_map = dict(zip(columns, range(len(columns))))
with open("data.csv", encoding="gb18030") as f:
    f_csv = csv.reader(f)
    headers = next(f_csv)
    resultSet = namedtuple("resultSet", headers)
    for r in f_csv:
        row = resultSet(*r)
        areas = result.setdefault(row.deal_date, [0, 0, 0])
        areas[areas_map[row.area]] += 1
result

结果:

{'2019/1/1': [1, 1, 1], '2019/1/2': [1, 1, 1], '2019/1/3': [1, 0, 1]}

借助Pandas转换为表结构方便查看:

pd.DataFrame.from_dict(result, 'index', columns=["A区", "B区", "C区"])

结果:
各项工具大pk,分组聚合哪家强?

下面用Python模拟一下Pandas数据透视表实现分组统计的过程:

import csv
from collections import namedtuple, Counter

result = Counter()
with open("data.csv", encoding="gb18030") as f:
    f_csv = csv.reader(f)
    headers = next(f_csv)
    resultSet = namedtuple("resultSet", headers)
    for r in f_csv:
        row = resultSet(*r)
        result[(row.deal_date, row.area)] += 1
result

结果:

Counter({('2019/1/1', 'A区'): 1,
         ('2019/1/1', 'B区'): 1,
         ('2019/1/1', 'C区'): 1,
         ('2019/1/2', 'A区'): 1,
         ('2019/1/2', 'B区'): 1,
         ('2019/1/2', 'C区'): 1,
         ('2019/1/3', 'A区'): 1,
         ('2019/1/3', 'C区'): 1})

第二步Pandas还需再对这个结果进行重塑才获得最终所须要的结果,具体重塑的过程实际实现较为复杂,但能够借助category的Series模拟实现一下:

indexs = result.keys()
index = pd.Series(map(lambda x: x[0], indexs), dtype='category')
columns = pd.Series(map(lambda x: x[1], indexs), dtype='category')
values = result.values()

data = np.zeros((len(index.cat.categories), len(columns.cat.categories)))
for x, y, v in zip(index.cat.codes, columns.cat.codes, values):
    data[x, y] = v
result = pd.DataFrame(data, index=index.cat.categories,
                      columns=columns.cat.categories, dtype='int8')
result

结果:
各项工具大pk,分组聚合哪家强?

总结

其实无论用什么语言和工具,分组聚合统计的核心原理都是:
各项工具大pk,分组聚合哪家强?今天我给你们同时演示了MySQL、Excel、Pandas、VBA和Python实现分组聚合,经过对比,或许你们能本身总结出各项工具的优劣和适用场景。欢迎你在下方评论区留言,发表你的见解,给你们分享和互动。

相关文章
相关标签/搜索