codeforces 360 D - Remainders Game

原题:spa

Description.net

Today Pari and Arya are playing a game called Remainders.code

Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya  if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value  for any positive integer x?orm

Note, that  means the remainder of x after dividing it by y.blog

Inputip

The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.ci

The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).rem

Outputinput

Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.string

Sample Input

Input
4 5
2 3 5 12
Output
Yes
Input
2 7
2 3
Output
No


提示:
如下是引用http://blog.csdn.net/aozil_yang/article/details/51812908

反证法,假设解不惟一,有x1,x2,那么x1,x2知足:

x1 % ci == x2 % ci 而且x1 % k != x2 % k,因此 (x1 - x2) % ci == 0 ,(x1-x2) % k != 0

而且lcm(c1,c2,,,,cn) % ci == 0

,因此lcm % (x1-x2) == 0.

且   (x1-x2) % k != 0;

因此lcm % k != 0  

因此命题: 若是解不惟一,那么lcm % k != 0

逆否命题为:  若lcm % k == 0 那么 解惟一!

因此只须要判断lcm是否k 的整数倍,

也就是说这个问题能够转换为:

是否存在x使得  x是c1,c2,c3,,,cn,k的整数倍!

是的话就是yes,不然就是no!

 

 

代码:

#include<cstdio> #include<cstring> #include<algorithm>
using namespace std; typedef long long ll; ll gcd(ll a,ll b) { return !b ? a : gcd(b,a%b); } ll lcm(ll a,ll b) { return a*b/gcd(a,b); } int main() { // printf("%d\n",gcd(6,13));
    int n; ll k; scanf("%d%I64d",&n,&k); ll ans = 1; bool ok = false; for (int i = 0; i < n; ++i) { ll x; scanf("%I64d",&x); if (ans) ans = lcm(ans,x) % k; if (ans == 0)ok=true; } printf("%s\n",ok? "Yes" : "No" ); return 0; } 
相关文章
相关标签/搜索