开源一个机器学习文本分析项目

TextAnalyzer

A text analyzer which is based on machine learning that can analyze text.java

So far, it supports hot word extracting, text classification, part of speech tagging, named entity recognition, chinese word segment, extracting address, synonym, text clustering, word2vec model, edit distance, chinese word segment, sentence similarity.git

Features

extracting hot words from a text.github

  1. to gather statistics via frequence.
  2. to gather statistics via by tf-idf algorithm
  3. to gather statistics via a score factor additionally.

extracting address from a text.bash

synonym can be recognized并发

SVM Classificator机器学习

This analyzer supports to classify text by svm. it involves vectoring the text. We can train the samples and then make a classification by the model.分布式

For convenience,the model,tfidf and vector will be stored.学习

kmeans clustering && xmeans clusteringui

This analyzer supports to clustering text by kmeans and xmeans.this

vsm clustering

This analyzer supports to clustering text by vsm.

part of speech tagging

It's implemented by HMM model and decoder by viterbi algorithm.

google word2vec model

This analyzer supports to use word2vec model.

chinese word segment

This analyzer supports to do chinese word segment.

edit distance

This analyzer supports calculating edit distance on char level or word level.

sentence similarity

This analyzer supports calculating similarity between two sentences.

How To Use

just simple like this

Extracting Hot Words

  1. indexing a document and get a docId.
long docId = TextIndexer.index(text);
复制代码
  1. extracting by docId.
HotWordExtractor extractor = new HotWordExtractor();
 List<Result> list = extractor.extract(0, 20, false);
 if (list != null) for (Result s : list)
    System.out.println(s.getTerm() + " : " + s.getFrequency() + " : " + s.getScore());
复制代码

a result contains term,frequency and score.

失业证 : 1 : 0.31436604
户口 : 1 : 0.30099702
单位 : 1 : 0.29152703
提取 : 1 : 0.27927202
领取 : 1 : 0.27581802
职工 : 1 : 0.27381304
劳动 : 1 : 0.27370203
关系 : 1 : 0.27080503
本市 : 1 : 0.27080503
终止 : 1 : 0.27080503
复制代码

Extracting Address

String str ="xxxx";
AddressExtractor extractor = new AddressExtractor();
List<String> list = extractor.extract(str);
复制代码

SVM Classificator

  1. training the samples.
SVMTrainer trainer = new SVMTrainer();
trainer.train();
复制代码
  1. predicting text classification.
double[] data = trainer.getWordVector(text);
trainer.predict(data);
复制代码

Kmeans Clustering && Xmeans Clustering

List<String> list = DataReader.readContent(KMeansCluster.DATA_FILE);
int[] labels = new KMeansCluster().learn(list);
复制代码

VSM Clustering

List<String> list = DataReader.readContent(VSMCluster.DATA_FILE);
List<String> labels = new VSMCluster().learn(list);
复制代码

Part Of Speech Tagging

HMMModel model = new HMMModel();
model.train();
ViterbiDecoder decoder = new ViterbiDecoder(model);
decoder.decode(words);
复制代码

Define Your Own Named Entity

MITIE is an information extractor library comes up with MIT NLP term , which github is https://github.com/mit-nlp/MITIE .

train total_word_feature_extractor

Prepare your word set, you can put them into a txt file in the directory of 'data'.

And then do things below:

git clone https://github.com/mit-nlp/MITIE.git
cd tools
cd wordrep
mkdir build
cd build
cmake ..
cmake --build . --config Release
wordrep -e data
复制代码

Finally you get the total_word_feature_extractor model.

train ner_model

We can use Java\C++\Python to train the ner model, anyway we must use the total_word_feature_extractor model to train it.

if Java,

NerTrainer nerTrainer = new NerTrainer("model/mitie_model/total_word_feature_extractor.dat");
复制代码

if C++,

ner_trainer trainer("model/mitie_model/total_word_feature_extractor.dat");
复制代码

if Python,

trainer = ner_trainer("model/mitie_model/total_word_feature_extractor.dat")
复制代码

build shared library

Do commands below:

cd mitielib
D:\MITIE\mitielib>mkdir build
D:\MITIE\mitielib>cd build
D:\MITIE\mitielib\build>cmake ..
D:\MITIE\mitielib\build>cmake --build . --config Release --target install
复制代码

Then we get these below:

-- Install configuration: "Release"
-- Installing: D:/MITIE/mitielib/java/../javamitie.dll
-- Installing: D:/MITIE/mitielib/java/../javamitie.jar
-- Up-to-date: D:/MITIE/mitielib/java/../msvcp140.dll
-- Up-to-date: D:/MITIE/mitielib/java/../vcruntime140.dll
-- Up-to-date: D:/MITIE/mitielib/java/../concrt140.dll
复制代码

Word2vec

we must set the word2vec's path system parameter when startup,just like this -Dword2vec.path=D:\Google_word2vec_zhwiki1710_300d.bin.

Word2Vec vec = Word2Vec.getInstance();
System.out.println("狗|猫: " + vec.wordSimilarity("狗", "猫"));
复制代码

Segment

DictSegment segment = new DictSegment();
System.out.println(segment.seg("我是中国人"));

复制代码

Edit Distance

char level,

CharEditDistance cdd = new CharEditDistance();
cdd.getEditDistance("what", "where");
cdd.getEditDistance("咱们是中国人", "他们是日本人吖,四贵子");
cdd.getEditDistance("是我", "我是");
复制代码

word level,

List list1 = new ArrayList<String>();
list1.add(new EditBlock("计算机",""));
list1.add(new EditBlock("多少",""));
list1.add(new EditBlock("钱",""));
List list2 = new ArrayList<String>();
list2.add(new EditBlock("电脑",""));
list2.add(new EditBlock("多少",""));
list2.add(new EditBlock("钱",""));
ed.getEditDistance(list1, list2);
复制代码

Sentence Similarity

String s1 = "咱们是中国人";
String s2 = "他们是日本人,四贵子";
SentenceSimilarity ss = new SentenceSimilarity();
System.out.println(ss.getSimilarity(s1, s2));
s1 = "咱们是中国人";
s2 = "咱们是中国人";
System.out.println(ss.getSimilarity(s1, s2));
复制代码

-------------推荐阅读------------

个人2017文章汇总——机器学习篇

个人2017文章汇总——Java及中间件

个人2017文章汇总——深度学习篇

个人2017文章汇总——JDK源码篇

个人2017文章汇总——天然语言处理篇

个人2017文章汇总——Java并发篇


跟我交流,向我提问:

这里写图片描述

公众号的菜单已分为“读书总结”、“分布式”、“机器学习”、“深度学习”、“NLP”、“Java深度”、“Java并发核心”、“JDK源码”、“Tomcat内核”等,可能有一款适合你的胃口。

为何写《Tomcat内核设计剖析》

欢迎关注:

这里写图片描述
相关文章
相关标签/搜索