官方文档:multiprocessing is a package that supports spawning processes using an API similar to the threading module. The multiprocessing package offers both local and remote concurrency, effectively side-stepping the Global Interpreter Lock by using subprocesses instead of threads。python
总的来讲是对补救Python多线程在多核操做系统中的一副良药。更多的推荐你们使用multiprocessing 模块。web
一些简单使用技巧见介绍windows
http://blog.csdn.net/dutsoft/...安全
廖雪峰python教程之多进程
其中最大的区别在于 多线程和多进程最大的不一样在于,多进程中,同一个变量,各自有一份拷贝存在于每一个进程中,互不影响,而多线程中,全部变量都由全部线程共享服务器
运行环境 Python2.7 ,windows多线程
import time, threading # 假定这是你的银行存款: balance = 0 def change_it(n): # 先存后取,结果应该为0: global balance balance = balance + n balance = balance - n def run_thread(n): for i in range(100000): change_it(n) t1 = threading.Thread(target=run_thread, args=(5,)) t2 = threading.Thread(target=run_thread, args=(8,)) t1.start() t2.start() t1.join() t2.join() print(balance)
运行的结果会是一个随机数,就是由于Python的多线程是不安全的,线程之间的调度会影响到其余线程的结果。ide
#coding=utf-8 import time, threading lock = threading.Lock() # 假定这是你的银行存款: balance = 0 def change_it(n): # 先存后取,结果应该为0: global balance balance = balance + n balance = balance - n def run_thread(n): for i in range(100000): lock.acquire() try: change_it(n) finally: lock.release() t1 = threading.Thread(target=run_thread, args=(5,)) t2 = threading.Thread(target=run_thread, args=(8,)) t1.start() t2.start() t1.join() t2.join() print(balance)
运行的结果是预想的0ui
另外再web服务器中会大量使用多进程的方式,gunicorn,uwsgi等spa