方阵的特征值与特征向量

定义: 设 A 是 n 阶方阵, 若是数 λ 和非零向量 x 使关系式 web Ax=λx 成立, 那么, λ 称为方阵 A 的特征值, 非零向量 x 称为 A 的对应于特征值 λ 的特征向量. 上式也能够写为: (Ax−λE)x=0 这个是 n 个未知数和 n 个方程的齐次线形方程组. 它有非零解的充要条件是, 系数行列式为0, 即: |A−λE|=0 上面以 λ 为未知数的一元 n 次方程,
相关文章
相关标签/搜索