李飞飞团队最新论文:基于anchor关键点的类别级物体6D位姿跟踪

点击上方“3D视觉工坊”,选择“星标” 干货第一时间送达 简介 作者提出了一种基于RGB-D的深度学习方法6PACK,能够实时的跟踪已知类别物体。通过学习用少量的3D关键点来简洁地表示一个物体,基于这些关键点,通过关键点匹配来估计物体在帧与帧之间的运动。这些关键点使用无监督端到端学习来实现有效的跟踪。实验表明该方法显著优于现有方法,并支持机器人执行简单的基于视觉的闭环操作任务。 问题的提出 在机器
相关文章
相关标签/搜索