通俗易懂的PCA降维原理详解

       在机器学习实际的开发中,对原始数据的处理可能会占到主要的工作量,数据处理的好坏也往往直接关系到模型最后结果的好坏。在我们对原始数据进行特征提取时,有时会得到高维的特征向量,其中包含很多冗余和噪声。此时我们希望在高维的特征中找到影响整体的最主要的特征,来提升特征的表达能力、降低训练的复杂度。今天大管就和大家来聊一聊主成分分析(Principal Components Analysis)
相关文章
相关标签/搜索