机器学习(三)决策树学习

一.简介   决策树学习是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。 二.决策树的表示法   决策树通过把实例从艮节点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每一个结点指定了对实例的某个属性的测试,并且该结点的每一个后继分支对应于该属性的一个可能值。分类实例的方法是从这棵树的根节点开始,测试这个结点的属性,然后按照给定实例的属性值对应的树枝向
相关文章
相关标签/搜索