JavaShuo
栏目
标签
2015C-CIKM-Detect Rumors Using Time Series of Social Context Information on Microblogging Websites
时间 2020-12-30
标签
谣言检测
栏目
C&C++
繁體版
原文
原文链接
Detect Rumors Using Time Series of Social Context Information on Microblogging Websites(2015CIKM),JingMa 主要内容 提出一个动态时间序列结构模型(Dynamic Series-Time Structure model——DSTS),能够抓取多种社会上下文特征随时间流逝的变化。实验结果表明,在得知
>>阅读原文<<
相关文章
1.
An overview of time series forecasting models
2.
Multiple websites on single instance of IIS
3.
Time-Series Analysis
4.
Social Information Graph
5.
How To Make Your Websites Faster On Mobile Devices
6.
Identification of Urban Functional Regions in Chengdu Based on Taxi Trajectory Time Series Data
7.
阅读笔记:Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests(Python package)
8.
A Proposal on Organization of Information System
9.
Scaling Time Series Data Storage — Part I
10.
《A Review of Unsupervised Feature Learning and Deep Learning for Time-Series Modeling》笔记
更多相关文章...
•
PHP time() 函数
-
PHP参考手册
•
XSLT
元素
-
XSLT 教程
•
RxJava操作符(六)Utility
•
RxJava操作符(一)Creating Observables
相关标签/搜索
information
social
websites
series
context
using
time
for...of
using&n
for..of
应用数学
C&C++
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸载与安装
2.
Unity NavMeshComponents 学习小结
3.
Unity技术分享连载(64)|Shader Variant Collection|Material.SetPassFast
4.
为什么那么多人用“ji32k7au4a83”作密码?
5.
关于Vigenere爆0总结
6.
图论算法之最小生成树(Krim、Kruskal)
7.
最小生成树 简单入门
8.
POJ 3165 Traveling Trio 笔记
9.
你的快递最远去到哪里呢
10.
云徙探险中台赛道:借道云原生,寻找“最优路线”
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
An overview of time series forecasting models
2.
Multiple websites on single instance of IIS
3.
Time-Series Analysis
4.
Social Information Graph
5.
How To Make Your Websites Faster On Mobile Devices
6.
Identification of Urban Functional Regions in Chengdu Based on Taxi Trajectory Time Series Data
7.
阅读笔记:Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests(Python package)
8.
A Proposal on Organization of Information System
9.
Scaling Time Series Data Storage — Part I
10.
《A Review of Unsupervised Feature Learning and Deep Learning for Time-Series Modeling》笔记
>>更多相关文章<<