Python - 列联表的独立性检验(卡方检验)

 

Python - 列联表的独立性检验(卡方检验)

想对两个或两个以上因子彼此之间是否相互独立作检验时,就要用到卡方检验,原觉得在Python中实现会像R的chisq.test同样简便,但scipy的stats模块功能实在分得太细,以前查到的是stats中的chisquare方法,但尝试事后发现chisquare其实是作适合性检验的。 html

e.g. 三种农药的杀虫数据python

杀虫效果
死亡数 37 49 23
未死亡数 150 100 57

分析杀虫效果与农药类型是否有关数组

import numpy as np from scipy.stats import chi2_contingency d = np.array([[37, 49, 23], [150, 100, 57]]) chi2_contingency(d)

输出为: 
(7.6919413561281065, 
0.021365652322337315, 
2, 
array([[ 48.99759615, 39.04086538, 20.96153846], 
[ 138.00240385, 109.95913462, 59.03846154]]))markdown

第一个值为卡方值,第二个值为P值,第三个值为自由度,第四个为与原数据数组同维度的对应理论值post

具体参考文档:scipy.stats.chi2_contingencyspa

相关文章
相关标签/搜索