线性回归与梯度下降算法

一、单变量线性回归 1.1 线性回归模型 其中J(θ0,θ1)是代价函数,目标可以用下图来理解,也就是寻找θ0和θ1,使J(θ0,θ1)最小,即三维空间中的最低点。 1.2 梯度下降算法 梯度下降是一个用来求函数最小值的算法,我们将使用梯度下降算法来求出代价函数 J(θ0,θ1) 的最小值。 梯度下降背后的思想是:开始时我们随机选择一个参数的组合(θ0,θ1,…,θn),计算代价函数,然后我们寻找
相关文章
相关标签/搜索