在前面的章节咱们已经了解了面向对象的入门知识,知道了如何定义类,如何建立对象以及如何给对象发消息。为了可以更好的使用面向对象编程思想进行程序开发,咱们还须要对Python中的面向对象编程进行更为深刻的了解。html
以前咱们讨论过Python中属性和方法访问权限的问题,虽然咱们不建议将属性设置为私有的,可是若是直接将属性暴露给外界也是有问题的,好比咱们没有办法检查赋给属性的值是否有效。咱们以前的建议是将属性命名以单下划线开头,经过这种方式来暗示属性是受保护的,不建议外界直接访问,那么若是想访问属性能够经过属性的getter(访问器)和setter(修改器)方法进行对应的操做。若是要作到这点,就能够考虑使用@property包装器来包装getter和setter方法,使得对属性的访问既安全又方便,代码以下所示。程序员
class Person(object): def __init__(self, name, age): self._name = name self._age = age # 访问器 - getter方法 @property def name(self): return self._name # 访问器 - getter方法 @property def age(self): return self._age # 修改器 - setter方法 @age.setter def age(self, age): self._age = age def play(self): if self._age <= 16: print('%s正在玩飞行棋.' % self._name) else: print('%s正在玩斗地主.' % self._name) def main(): person = Person('王大锤', 12) person.play() person.age = 22 person.play() # person.name = '白元芳' # AttributeError: can't set attribute if __name__ == '__main__': main()
咱们讲到这里,不知道你们是否已经意识到,Python是一门动态语言。一般,动态语言容许咱们在程序运行时给对象绑定新的属性或方法,固然也能够对已经绑定的属性和方法进行解绑定。可是若是咱们须要限定自定义类型的对象只能绑定某些属性,能够经过在类中定义__slots__变量来进行限定。须要注意的是__slots__的限定只对当前类的对象生效,对子类并不起任何做用。编程
class Person(object): # 限定Person对象只能绑定_name, _age和_gender属性 __slots__ = ('_name', '_age', '_gender') def __init__(self, name, age): self._name = name self._age = age @property def name(self): return self._name @property def age(self): return self._age @age.setter def age(self, age): self._age = age def play(self): if self._age <= 16: print('%s正在玩飞行棋.' % self._name) else: print('%s正在玩斗地主.' % self._name) def main(): person = Person('王大锤', 22) person.play() person._gender = '男' # AttributeError: 'Person' object has no attribute '_is_gay' # person._is_gay = True
以前,咱们在类中定义的方法都是对象方法,也就是说这些方法都是发送给对象的消息。实际上,咱们写在类中的方法并不须要都是对象方法,例如咱们定义一个“三角形”类,经过传入三条边长来构造三角形,并提供计算周长和面积的方法,可是传入的三条边长未必能构造出三角形对象,所以咱们能够先写一个方法来验证三条边长是否能够构成三角形,这个方法很显然就不是对象方法,由于在调用这个方法时三角形对象还没有建立出来(由于都不知道三条边能不能构成三角形),因此这个方法是属于三角形类而并不属于三角形对象的。咱们可使用静态方法来解决这类问题,代码以下所示。安全
from math import sqrt class Triangle(object): def __init__(self, a, b, c): self._a = a self._b = b self._c = c @staticmethod def is_valid(a, b, c): return a + b > c and b + c > a and a + c > b def perimeter(self): return self._a + self._b + self._c def area(self): half = self.perimeter() / 2 return sqrt(half * (half - self._a) * (half - self._b) * (half - self._c)) def main(): a, b, c = 3, 4, 5 # 静态方法和类方法都是经过给类发消息来调用的 if Triangle.is_valid(a, b, c): t = Triangle(a, b, c) print(t.perimeter()) # 也能够经过给类发消息来调用对象方法可是要传入接收消息的对象做为参数 # print(Triangle.perimeter(t)) print(t.area()) # print(Triangle.area(t)) else: print('没法构成三角形.') if __name__ == '__main__': main()
和静态方法比较相似,Python还能够在类中定义类方法,类方法的第一个参数约定名为cls,它表明的是当前类相关的信息的对象(类自己也是一个对象,有的地方也称之为类的元数据对象),经过这个参数咱们能够获取和类相关的信息而且能够建立出类的对象,代码以下所示。app
简单的说,类和类之间的关系有三种:is-a、has-a和use-a关系。dom
咱们可使用一种叫作UML(统一建模语言)的东西来进行面向对象建模,其中一项重要的工做就是把类和类之间的关系用标准化的图形符号描述出来。关于UML咱们在这里不作详细的介绍,有兴趣的读者能够自行阅读《UML面向对象设计基础》一书。ide
利用类之间的这些关系,咱们能够在已有类的基础上来完成某些操做,也能够在已有类的基础上建立新的类,这些都是实现代码复用的重要手段。复用现有的代码不只能够减小开发的工做量,也有利于代码的管理和维护,这是咱们在平常工做中都会使用到的技术手段。函数
刚才咱们提到了,能够在已有类的基础上建立新类,这其中的一种作法就是让一个类从另外一个类那里将属性和方法直接继承下来,从而减小重复代码的编写。提供继承信息的咱们称之为父类,也叫超类或基类;获得继承信息的咱们称之为子类,也叫派生类或衍生类。子类除了继承父类提供的属性和方法,还能够定义本身特有的属性和方法,因此子类比父类拥有的更多的能力,在实际开发中,咱们常常会用子类对象去替换掉一个父类对象,这是面向对象编程中一个常见的行为,对应的原则称之为里氏替换原则。下面咱们先看一个继承的例子。学习
class Person(object): """人""" def __init__(self, name, age): self._name = name self._age = age @property def name(self): return self._name @property def age(self): return self._age @age.setter def age(self, age): self._age = age def play(self): print('%s正在愉快的玩耍.' % self._name) def watch_av(self): if self._age >= 18: print('%s正在观看爱情动做片.' % self._name) else: print('%s只能观看《熊出没》.' % self._name) class Student(Person): """学生""" def __init__(self, name, age, grade): super().__init__(name, age) self._grade = grade @property def grade(self): return self._grade @grade.setter def grade(self, grade): self._grade = grade def study(self, course): print('%s的%s正在学习%s.' % (self._grade, self._name, course)) class Teacher(Person): """老师""" def __init__(self, name, age, title): super().__init__(name, age) self._title = title @property def title(self): return self._title @title.setter def title(self, title): self._title = title def teach(self, course): print('%s%s正在讲%s.' % (self._name, self._title, course)) def main(): stu = Student('王大锤', 15, '初三') stu.study('数学') stu.watch_av() t = Teacher('骆昊', 38, '老叫兽') t.teach('Python程序设计') t.watch_av() if __name__ == '__main__': main()
子类在继承了父类的方法后,能够对父类已有的方法给出新的实现版本,这个动做称之为方法重写(override)。经过方法重写咱们可让父类的同一个行为在子类中拥有不一样的实现版本,当咱们调用这个通过子类重写的方法时,不一样的子类对象会表现出不一样的行为,这个就是多态(poly-morphism)。
from abc import ABCMeta, abstractmethod class Pet(object, metaclass=ABCMeta): """宠物""" def __init__(self, nickname): self._nickname = nickname @abstractmethod def make_voice(self): """发出声音""" pass class Dog(Pet): """狗""" def make_voice(self): print('%s: 汪汪汪...' % self._nickname) class Cat(Pet): """猫""" def make_voice(self): print('%s: 喵...喵...' % self._nickname) def main(): pets = [Dog('旺财'), Cat('凯蒂'), Dog('大黄')] for pet in pets: pet.make_voice() if __name__ == '__main__': main()
在上面的代码中,咱们将类处理成了一个抽象类,所谓抽象类就是不可以建立对象的类,这种类的存在就是专门为了让其余类去继承它。Python从语法层面并无像Java或C#那样提供对抽象类的支持,可是咱们能够经过模块的元类和包装器来达到抽象类的效果,若是一个类中存在抽象方法那么这个类就不可以实例化(建立对象)。上面的代码中,和两个子类分别对类中的抽象方法进行了重写并给出了不一样的实现版本,当咱们在函数中调用该方法时,这个方法就表现出了多态行为(一样的方法作了不一样的事情)。PetabcABCMetaabstractmethodDogCatPetmake_voicemain
from abc import ABCMeta, abstractmethod from random import randint, randrange class Fighter(object, metaclass=ABCMeta): """战斗者""" # 经过__slots__魔法限定对象能够绑定的成员变量 __slots__ = ('_name', '_hp') def __init__(self, name, hp): """初始化方法 :param name: 名字 :param hp: 生命值 """ self._name = name self._hp = hp @property def name(self): return self._name @property def hp(self): return self._hp @hp.setter def hp(self, hp): self._hp = hp if hp >= 0 else 0 @property def alive(self): return self._hp > 0 @abstractmethod def attack(self, other): """攻击 :param other: 被攻击的对象 """ pass class Ultraman(Fighter): """奥特曼""" __slots__ = ('_name', '_hp', '_mp') def __init__(self, name, hp, mp): """初始化方法 :param name: 名字 :param hp: 生命值 :param mp: 魔法值 """ super().__init__(name, hp) self._mp = mp def attack(self, other): other.hp -= randint(15, 25) def huge_attack(self, other): """究极必杀技(打掉对方至少50点或四分之三的血) :param other: 被攻击的对象 :return: 使用成功返回True不然返回False """ if self._mp >= 50: self._mp -= 50 injury = other.hp * 3 // 4 injury = injury if injury >= 50 else 50 other.hp -= injury return True else: self.attack(other) return False def magic_attack(self, others): """魔法攻击 :param others: 被攻击的群体 :return: 使用魔法成功返回True不然返回False """ if self._mp >= 20: self._mp -= 20 for temp in others: if temp.alive: temp.hp -= randint(10, 15) return True else: return False def resume(self): """恢复魔法值""" incr_point = randint(1, 10) self._mp += incr_point return incr_point def __str__(self): return '~~~%s奥特曼~~~\n' % self._name + \ '生命值: %d\n' % self._hp + \ '魔法值: %d\n' % self._mp class Monster(Fighter): """小怪兽""" __slots__ = ('_name', '_hp') def attack(self, other): other.hp -= randint(10, 20) def __str__(self): return '~~~%s小怪兽~~~\n' % self._name + \ '生命值: %d\n' % self._hp def is_any_alive(monsters): """判断有没有小怪兽是活着的""" for monster in monsters: if monster.alive > 0: return True return False def select_alive_one(monsters): """选中一只活着的小怪兽""" monsters_len = len(monsters) while True: index = randrange(monsters_len) monster = monsters[index] if monster.alive > 0: return monster def display_info(ultraman, monsters): """显示奥特曼和小怪兽的信息""" print(ultraman) for monster in monsters: print(monster, end='') def main(): u = Ultraman('骆昊', 1000, 120) m1 = Monster('狄仁杰', 250) m2 = Monster('白元芳', 500) m3 = Monster('王大锤', 750) ms = [m1, m2, m3] fight_round = 1 while u.alive and is_any_alive(ms): print('========第%02d回合========' % fight_round) m = select_alive_one(ms) # 选中一只小怪兽 skill = randint(1, 10) # 经过随机数选择使用哪一种技能 if skill <= 6: # 60%的几率使用普通攻击 print('%s使用普通攻击打了%s.' % (u.name, m.name)) u.attack(m) print('%s的魔法值恢复了%d点.' % (u.name, u.resume())) elif skill <= 9: # 30%的几率使用魔法攻击(可能因魔法值不足而失败) if u.magic_attack(ms): print('%s使用了魔法攻击.' % u.name) else: print('%s使用魔法失败.' % u.name) else: # 10%的几率使用究极必杀技(若是魔法值不足则使用普通攻击) if u.huge_attack(m): print('%s使用究极必杀技虐了%s.' % (u.name, m.name)) else: print('%s使用普通攻击打了%s.' % (u.name, m.name)) print('%s的魔法值恢复了%d点.' % (u.name, u.resume())) if m.alive > 0: # 若是选中的小怪兽没有死就回击奥特曼 print('%s回击了%s.' % (m.name, u.name)) m.attack(u) display_info(u, ms) # 每一个回合结束后显示奥特曼和小怪兽的信息 fight_round += 1 print('\n========战斗结束!========\n') if u.alive > 0: print('%s奥特曼胜利!' % u.name) else: print('小怪兽胜利!') if __name__ == '__main__': main()
import random class Card(object): """一张牌""" def __init__(self, suite, face): self._suite = suite self._face = face @property def face(self): return self._face @property def suite(self): return self._suite def __str__(self): if self._face == 1: face_str = 'A' elif self._face == 11: face_str = 'J' elif self._face == 12: face_str = 'Q' elif self._face == 13: face_str = 'K' else: face_str = str(self._face) return '%s%s' % (self._suite, face_str) def __repr__(self): return self.__str__() class Poker(object): """一副牌""" def __init__(self): self._cards = [Card(suite, face) for suite in '♠♥♣♦' for face in range(1, 14)] self._current = 0 @property def cards(self): return self._cards def shuffle(self): """洗牌(随机乱序)""" self._current = 0 random.shuffle(self._cards) @property def next(self): """发牌""" card = self._cards[self._current] self._current += 1 return card @property def has_next(self): """还有没有牌""" return self._current < len(self._cards) class Player(object): """玩家""" def __init__(self, name): self._name = name self._cards_on_hand = [] @property def name(self): return self._name @property def cards_on_hand(self): return self._cards_on_hand def get(self, card): """摸牌""" self._cards_on_hand.append(card) def arrange(self, card_key): """玩家整理手上的牌""" self._cards_on_hand.sort(key=card_key) # 排序规则-先根据花色再根据点数排序 def get_key(card): return (card.suite, card.face) def main(): p = Poker() p.shuffle() players = [Player('东邪'), Player('西毒'), Player('南帝'), Player('北丐')] for _ in range(13): for player in players: player.get(p.next) for player in players: print(player.name + ':', end=' ') player.arrange(get_key) print(player.cards_on_hand) if __name__ == '__main__': main()
说明:你们能够本身尝试在上面代码的基础上写一个简单的扑克游戏,例如21点(Black Jack),游戏的规则能够本身在网上找一找。
""" 某公司有三种类型的员工 分别是部门经理、程序员和销售员 须要设计一个工资结算系统 根据提供的员工信息来计算月薪 部门经理的月薪是每个月固定15000元 程序员的月薪按本月工做时间计算 每小时150元 销售员的月薪是1200元的底薪加上销售额5%的提成 """ from abc import ABCMeta, abstractmethod class Employee(object, metaclass=ABCMeta): """员工""" def __init__(self, name): """ 初始化方法 :param name: 姓名 """ self._name = name @property def name(self): return self._name @abstractmethod def get_salary(self): """ 得到月薪 :return: 月薪 """ pass class Manager(Employee): """部门经理""" def get_salary(self): return 15000.0 class Programmer(Employee): """程序员""" def __init__(self, name, working_hour=0): super().__init__(name) self._working_hour = working_hour @property def working_hour(self): return self._working_hour @working_hour.setter def working_hour(self, working_hour): self._working_hour = working_hour if working_hour > 0 else 0 def get_salary(self): return 150.0 * self._working_hour class Salesman(Employee): """销售员""" def __init__(self, name, sales=0): super().__init__(name) self._sales = sales @property def sales(self): return self._sales @sales.setter def sales(self, sales): self._sales = sales if sales > 0 else 0 def get_salary(self): return 1200.0 + self._sales * 0.05 def main(): emps = [ Manager('刘备'), Programmer('诸葛亮'), Manager('曹操'), Salesman('荀彧'), Salesman('吕布'), Programmer('张辽'), Programmer('赵云') ] for emp in emps: if isinstance(emp, Programmer): emp.working_hour = int(input('请输入%s本月工做时间: ' % emp.name)) elif isinstance(emp, Salesman): emp.sales = float(input('请输入%s本月销售额: ' % emp.name)) # 一样是接收get_salary这个消息可是不一样的员工表现出了不一样的行为(多态) print('%s本月工资为: ¥%s元' % (emp.name, emp.get_salary())) if __name__ == '__main__': main()