量化策略构建:均值回归模型

“ 如今已然衰朽者,未来可能重放异彩。如今备受青睐者,未来却可能黯然失色。” 当事物发展严重偏离其均值时,均值会像万有引力同样令其回归。若是时间足够长,万物都终将回归于其均值。正所谓:盛极必衰,否极泰来。数据库


在金融学中,均值回归是价格偏离均价或价值必定程度后向其靠拢的规律。本质上,均值回归就是哲学思想中所说的『物极必反』。用大白话能够简单地归纳为 “ 涨多必跌,跌多必涨 ” 。数组


在商品期货交易中,对于均值回归模型的应用场景,选择跨期价差是很是理想的交易标的。即对不一样交割期的合约同时进入低买高卖,当合约间价差太高或太低时,相应的卖出或买入价差,等价差回归均衡价差后,再平仓从而获利。markdown


均值回归模型

如上图所示:均值回归模型的基础是跨期价差的回归和震荡特征。理论上,在期货订价和期现套利的做用下,跨期合约间存在稳定的、可量化的价差关系。oop


当两个合约的价差偏离均衡价差必定程度后,会有向均衡价差回复的走势,那么,咱们能够据此构造均值回归模型。测试


FG1809合约 - FG1805合约价差走势图spa

合约价差走势图

数据来源:quant.la3d


MA1809合约 - MA1805合约价差走势图code

合约价差走势图

数据来源:quant.laorm

如上图所示,价差一般会以其均值为中心上下波动。也就是说,当价差因为波动而偏离均值时,它将调整并从新归于均值。那么若是咱们若是能捕捉偏离价差的回归,就能够今后获利。值得注意的是:合约到期月份相差越多,跨期价差波动空间越大。get


但若是考虑到资金的时间成本,等待价差回归,也是很不划算的。那么就须要对价差均值进行从新定义,以简单均线或自适应均线来代替均值,找到短周期的一种获利方法。


在这以前,就须要引入标准差(standard deviation)的概念,一般用小写希腊字母。σ(sigma,读 “ 西格玛 ”)。


通俗地讲,一组数据的标准差就是这组数据离均值的广泛差距。标准差的计算公式为:

标准差

若是这组数据的波动较大,那么 σ 相应也会较大;相反的,若是这组数据波动小,那么 σ 会更接近零。


具体的,用滞后一段时间的价差均线做为均衡价差,以均线加上若干倍的标准差做为开仓标准和止损标准,当价差偏离超过若干个标准差后策略开仓,而偏离更多时则止损。


此外,因为真实套利过程当中,不论是人工下单仍是量化交易,套利交易没法对价差瞬时的噪声性的偏离即时反应,因此只能捕捉必定市场内持续的偏离。

套利策略

根据如上模型原理,在判断套利开平仓条件时,把移动均值 μ 均衡价差,k 为止损系数,μ + a * σ 与 μ - a * σ 为套利上下界构造跨期套利策略:


一、当 μ1 > μ + a * σ 时,价差突破套利区间上限,此时认为价差偏大,则以最近 1 分钟价格作空价差,即熊市套利策略。

二、当 μ1 > μ + a * σ * k 时,价差突破套利区间上限至更多,此时认为价差可能会更大,则止损,熊市套利策略结束。

三、当 μ1 < μ - b * σ 时,价差突破套利区间下限,此时认为价差偏小,则以最近 1 分钟价格作多价差,即牛市套利策略。

四、当 μ1 < μ - b * σ * k 时,价差突破套利区间下限至更多,此时认为价差可能会更小,则止损,牛市套利策略结束。


须要提醒的是,在不一样市场环境下跨期套利价差的分布特色不一样,使用的跨期套利上下阈值也不一样,a 与 b 越大,价差波动区间越大,开仓条件越苛刻,套利次数减少,可是单次套利的获利空间增长。


价差成交次数分布图

策略图表

数据来源:quant.la

反之 a 与 b 越小,虽然增长了套利实施的次数,但交易成本也随之增长,单次套利收益空间缩小。


接下来,咱们利用 BotVS 量化交易平台进一步操做,来实现一个均值回归模型的实例,从而验证个人们理论,是否能发现赚钱的机会。


数据准备:

咱们直接使用发明者量化数据库数据,代码以下:

发明者量化数据库数据

第一行:调用 K 线数组;

第二行:过滤 K 线数组长度;

第六行:调用 talib 库 BOLL 指标;

第七行:定义套利区间上限;

第八行:定义均值;

第九行:定义套利区间下限;

十行如下:计算实时价差,及其余方便后续的数据处理。


策略逻辑代码:

策略逻辑代码


利用交易信号数据,进行模拟测试。咱们设定交易参数和规则:

  • 本金:1 万

  • 合约:MA

  • K 线周期:1 分钟

  • 时间跨度:3 个月

  • 手续费为 5 元

  • 数据类型:模拟级 Tick


绩效以下:

策略图表

策略图表

基于上述的均值回归模型,咱们还能够分别从开平仓方式两个角度,经过均值斜率条件,来动态的调整套利上限、下限阈值。


回归模型

如上图,以熊市套利为例,咱们经过计算降低中的均值斜率:

z = ( y2 - y1 ) / ( x2 - x1 )


调整后的套利上限、下限:

μ + a * σ * ( z + 1 ]()

μ - a * σ * ( z + 1 )


相比以前的模型的开平仓方式,调整后的策略模型,能够在套利上、下阈值上更具备灵活性。

开平仓方式


在不一样的市场条件下,经过均值斜率动态的调整套利上限、下限阈值,能够是模型更加适应当前的市场状态。下降因价差大幅波动,形成的止损。而且单次增长跨期套利的获利空间。


策略领取在【宽客在线

相关文章
相关标签/搜索