代码这样写更优雅 (Python 版)

Python 这门语言最大的优势之一就是语法简洁,好的代码就像伪代码同样,干净、整洁、一目了然。但有时候咱们写代码,特别是 Python 初学者,每每仍是按照其它语言的思惟习惯来写,那样的写法不只运行速度慢,代码读起来也费尽,给人一种拖泥带水的感受,过段时间连本身也读不懂。html

《计算机程序的构造和解释》的做者哈尔·阿伯尔森曾这样说:“Programs must be written for people to read, and only incidentally for machines to execute.” python

要写出 Pythonic(优雅的、地道的、整洁的)代码,还要平时多观察那些大牛代码,Github 上有不少很是优秀的源代码值得阅读,好比:requests、flask、tornado,笔者列举一些常见的 Pythonic 写法,但愿能给你带来一点启迪。程序员

一、变量交换

大部分编程语言中交换两个变量的值时,不得不引入一个临时变量:web

>>> a = 1
>>> b = 2
>>> tmp = a
>>> a = b
>>> b = tmp复制代码

pythonic编程

>>> a, b = b, a复制代码

二、循环遍历区间元素

for i in [0, 1, 2, 3, 4, 5]:
    print i2
# 或者
for i in range(6):
    print i2复制代码

pythonicflask

for i in xrange(6):
    print i2复制代码

xrange 返回的是生成器对象,生成器比列表更加节省内存,不过须要注意的是 xrange 是 python2 中的写法,python3 只有 range 方法,特色和 xrange 是同样的。缓存

三、带有索引位置的集合遍历

遍历集合时若是须要使用到集合的索引位置时,直接对集合迭代是没有索引信息的,普通的方式使用:数据结构

colors = ['red', 'green', 'blue', 'yellow']

for i in range(len(colors)):
    print i, '--->', colors[i]复制代码

pythonicapp

for i, color in enumerate(colors):
    print i, '--->', color复制代码

四、字符串链接

字符串链接时,普通的方式能够用 + 操做编程语言

names = ['raymond', 'rachel', 'matthew', 'roger',
         'betty', 'melissa', 'judith', 'charlie']

s = names[0]
for name in names[1:]:
    s += ', ' + name
print s复制代码

pythonic

print ', '.join(names)复制代码

join 是一种更加高效的字符串链接方式,使用 + 操做时,每执行一次+操做就会致使在内存中生成一个新的字符串对象,遍历8次有8个字符串生成,形成无谓的内存浪费。而用 join 方法整个过程只会产生一个字符串对象。

五、打开/关闭文件

执行文件操做时,最后必定不能忘记的操做是关闭文件,即便报错了也要 close。普通的方式是在 finnally 块中显示的调用 close 方法。

f = open('data.txt')
try:
    data = f.read()
finally:
    f.close()复制代码

pythonic

with open('data.txt') as f:
    data = f.read()复制代码

使用 with 语句,系统会在执行完文件操做后自动关闭文件对象。

六、列表推导式

可以用一行代码简明扼要地解决问题时,毫不要用两行,好比

result = []
for i in range(10):
    s = i  2
    result.append(s)复制代码

pythonic

[i2 for i in xrange(10)]复制代码

与之相似的还有生成器表达式、字典推导式,都是很 pythonic 的写法。

七、善用装饰器

装饰器能够把与业务逻辑无关的代码抽离出来,让代码保持干净清爽,并且装饰器还能被多个地方重复利用。好比一个爬虫网页的函数,若是该 URL 曾经被爬过就直接从缓存中获取,不然爬下来以后加入到缓存,防止后续重复爬取。

def web_lookup(url, saved={}):
    if url in saved:
        return saved[url]
    page = urllib.urlopen(url).read()
    saved[url] = page
    return page复制代码

pythonic

import urllib #py2
#import urllib.request as urllib # py3

def cache(func):
    saved = {}

    def wrapper(url):
        if url in saved:
            return saved[url]
        else:
            page = func(url)
            saved[url] = page
            return page

    return wrapper


@cache
def web_lookup(url):
    return urllib.urlopen(url).read()复制代码

用装饰器写代码表面上感受代码量更多,可是它把缓存相关的逻辑抽离出来了,能够给更多的函数调用,这样总的代码量就会少不少,并且业务方法看起来简洁了。

八、合理使用列表

列表对象(list)是一个查询效率高于更新操做的数据结构,好比删除一个元素和插入一个元素时执行效率就很是低,由于还要对剩下的元素进行移动

names = ['raymond', 'rachel', 'matthew', 'roger',
         'betty', 'melissa', 'judith', 'charlie']
names.pop(0)
names.insert(0, 'mark')复制代码

pythonic

from collections import deque
names = deque(['raymond', 'rachel', 'matthew', 'roger',
               'betty', 'melissa', 'judith', 'charlie'])
names.popleft()
names.appendleft('mark')复制代码

deque 是一个双向队列的数据结构,删除元素和插入元素会很快

九、序列解包

p = 'vttalk', 'female', 30, 'python@qq.com'

name = p[0]
gender = p[1]
age = p[2]
email = p[3]复制代码

pythonic

name, gender, age, email = p复制代码

十、遍历字典的 key 和 value

方法一速度没那么快,由于每次迭代的时候还要从新进行hash查找 key 对应的 value。

方法二遇到字典很是大的时候,会致使内存的消耗增长一倍以上

# 方法一
for k in d:
    print k, '--->', d[k]

# 方法二
for k, v in d.items():
    print k, '--->', v复制代码

pythonic

for k, v in d.iteritems():
    print k, '--->', v复制代码

iteritems 返回迭代器对象,可节省更多的内存,不过在 python3 中没有该方法了,只有 items 方法,等值于 iteritems。

​固然还有不少 pythonic 写法,在此再也不一一列举,说不定有第二期,欢迎留言。以为不错就赞一个吧 (^o^)/

公众号『一个程序员的微站』(id:VTtalk),分享 Python 等技术干货和有温度的内容,欢迎关注
博客地址:foofish.net/idiomatic_p…

一个程序员的微站
相关文章
相关标签/搜索