题目大意:给定$n$个字符串的长度$a_i$,问至少用几种字符能够构造出字符串$s_1\sim s_n$,知足$|s_i|=a_i$且$s_1<s_2<\cdots<s_n$。 $ n\leqslant 2\times10^5,1\leqslant a_i\leqslant10^9 $ios
题解:发现这个有可二分性,而在肯定字符集大小的状况下,判断是否合法较为简单。当$a_i>a_{i-1}$时,在后面补最小的字符;不然就去掉尾部的字符,而后作一个“加法”,考虑到位数较多,能够用$\mathrm{map}$来记录每个位置的字符。spa
卡点:在二分中把字符集为$1$加入判断,致使$\mathrm{TLE}$blog
C++ Code:ci
#include <cstdio> #include <iostream> #include <algorithm> #include <map> const int maxn = 2e5 + 10; int n, a[maxn], p, flag = 1; bool check(int k) { std::map<int, int> M; M.clear(); for (int i = 1; i <= n; ++i) if (a[i] <= a[i - 1]) { while (!M.empty() && M.rbegin() -> first > a[i]) M.erase(--M.end()); for (p = a[i]; p && ++M[p] == k; --p) M[p] = 0; if (!p) return false; } return true; } int main() { std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0); std::cin >> n; for (int i = 1; i <= n; ++i) std::cin >> a[i], flag &= a[i] > a[i - 1]; if (flag) return std::cout << "1\n", 0; int l = 2, r = n, ans = n; while (l <= r) { int mid = l + r >> 1; if (check(mid)) r = mid - 1, ans = mid; else l = mid + 1; } std::cout << ans << '\n'; return 0; }