线程模块threading

线程 -Threading模块 -使用和进程基本类似

  • 多线程中是能够input
  • 在使用的过程当中从用户层面上并无感受到和进程的差异,可是有本质差异
  • 执行代码的最小单元
  • 每个进程至少有一个线程,这个线程是主线程
  • 一个进程内的全部线程之间的数据是共享的数据库

    #启动多线程
      from threading import Thread
      import time
    
      def func(i):
          time.sleep(1)
          print(i)
    
      for i in range(10):
          t = Thread(target=func, args=(i,))
          t.start()
      print('这是主线程执行的')
      #结果
      这是主线程执行的
      0
      2
      1
      3
      4
      5
      9
      8
      6
      7   #这里的十个数字是几乎同时被输出,说明是个线程并发
  • 面向对象的形式启动线程网络

    #用面向对象的方法开启新的线程
      from threading import Thread
      class MyThread(Thread): #继承Thread类
          def __init__(self, arg): #重写__init__方法,用于给这个类传参
              super().__init__()  #继承父类的__init__方法
              self.arg = arg  #将本身的参数赋给对象
    
          def run(self):                  
          '''objece.start()直接调用这个方法'''
              self.methond()
    
          def methond(self):
              '''这个类中的其余方法'''
              print(self.arg)

进程|主线程|子线程

  • 进程是最小的内存分配单位
  • 线程是操做系统调度的最小单位
  • 线程被cpu执行了
  • 进程中能够有多个线层,至少一个主线程
  • 主线程
  • 子线程
    • 子线程的数据储存在栈中
  • 全局变量global n线程共享

线程锁 -这是解释语言的一个不可避免的问题

  • 全局解释器锁 -锁的是线程
    • 同一时刻只能有一个线程访问cpu

进程和线程的效率对比 -线程快

from multiprocessing import Process
from threading import Thread
import time

def cal_num(i):
    i += 1

if __name__ == '__main__':
    p_list = []
    start = time.time()
    for i in range(100):    #建立100个进程执行计算
        p = Process(target=cal_num, args=(i, ))
        p.start()
        p_list.append(p)
    for i in p_list:
        i.join()
    end = time.time()
    t1 = end - start


start = time.time()
t_list = []
for i in range(100):
    t = Thread(target=cal_num, args=(i,))
    t.start()
    t_list.append(t)
for i in t_list:
    i.join()
end = time.time()
t2 = end - start
print('100个进程消耗时间{} \n 100个线程消耗时间{}'.format(t1, t2))
#结果
100个进程消耗时间0.19627618789672852  
100个线程消耗时间0.009418964385986328

线程中的其余方法 -threading.方法名()

  • threading.current_thread() 全部进程的状况
  • .get_ident() 查看进程的id
  • .active_count() 查看活跃进程的数量
  • .enumerate() 全部的进程状况放进一个列表中

守护线程 -守护线程和进程的区别

  • 将子线程设置成守护线程,守护线程将在主线程代码执行结束且其余线程执行结束后结束
  • 可是守护进程是在主进程结束以后结束,不等待其余子进程是否结束

线程锁 -Lock()和RLock

科学家吃面模型 -死锁模型

  • Lock()的死锁现象
  • Lock()互斥锁,只有一把钥匙
  • RLock()递归锁,只要拿到一把,就等于拿到一串,必须等一串所有归还下个线程才能继续拿钥匙
    • 死锁状况多线程

      #死锁状况
        from threading import Thread,Lock   
        from time import sleep
        #死锁状况
        from threading import Thread,Lock,RLock
        from time import sleep
      
        mt_lock = Lock()
        cz_lock = Lock()
        def miantao():
            mt_lock.acquire()
            print('拿到面条了')
            sleep(1)
            cz_lock.acquire()
            print('拿到叉子了')
            print('吃面')
            mt_lock.release()
            cz_lock.release()
      
        def chazi():
            cz_lock.acquire()
            print('拿到叉子了')
            sleep(1)
            mt_lock.acquire()
            print('拿到面条了')
            print('吃面')
            cz_lock.release()
            mt_lock.release()
      
        th1 = Thread(target=miantao, args=())
        th2 = Thread(target=chazi, args=())
        th1.start()
        th2.start()
    • 解决死锁问题RLock()并发

      from threading import Thread, Lock, RLock
        from time import sleep
      
        cz_lock = mt_lock = RLock() #这里建立递归锁
        def miantao():
            mt_lock.acquire()
            print('拿到面条了')
            sleep(1)
            cz_lock.acquire()
            print('拿到叉子了')
            print('吃面')
            mt_lock.release()
            cz_lock.release()
      
        def chazi():
            cz_lock.acquire()
            print('拿到叉子了')
            sleep(1)
            mt_lock.acquire()
            print('拿到面条了')
            print('吃面')
            cz_lock.release()
            mt_lock.release()   
      
        th1 = Thread(target=miantao, args=())
        th2 = Thread(target=chazi, args=())
        th1.start()
        th2.start()

信号量 -同进程

  • 限制一段代码有且只有n个线程同时调用

事件 -同进程

  • 建立就为阻塞状态app

    实例 -连接数据库,以及数据库的可链接的状况

    from threading import Thread, Event
    
      e = Event()
      def test():
          '''检测数据库的连通性'''
          info = input('>>')
          if info == '1':
              e.set()
              print('数据库网络链接打开')
          else:
              print('关闭数据库网络链接')
      def connect_q():
          '''链接数据库'''
          print('等待数据库网络链接')
          e.wait()
          print('数据库链接成功!')   
    
      t1 = Thread(target=test)
      t2 = Thread(target=connect_q)
      t1.start()
      t2.start()

条件 -Condition

  • .acquire() #钥匙
  • .release() #释放钥匙
  • .notify(num) #容许钥匙串有几把钥匙
  • .wait() #等待.notify(num)提供钥匙数量ide

    #条件
      from threading import Condition, Thread
    
      def print_thrad(con, i):
          con.acquire()   #这里也有锁
          con.wait()
          print('第{}线程运行了'.format(i)) 
          con.release()
    
      num = int(input('>>'))
      con = Condition()
    
    
      for i in range(10):
          t = Thread(target=print_thrad, args=(con, i))
          t.start()
    
      con.acquire()   #这里也有锁
      con.notify(num) #先后必须有钥匙和锁
      con.release()

定时器 -Timer()

  • 定时开启一个线程
  • 用法和Threa()一致ui

    from threading import Timer
    
      def func():
          print('两秒时间到了')
      Timer(2, func).start()
      print('呵呵')
      #结果
      呵呵
      两秒时间到了  #子线程两秒后才开启

线程队列 -queue.Queue()

  • .put() 放元素
  • .put_nowait() #放元素,没有元素报错
  • .get() #取出元素
  • .get_nowait() #没有元素报错

其余队列模块中的类

先进后出 LifoQueue()

优先级队列 PriorityQueue()

相关文章
相关标签/搜索