前面介绍了基本图形、模型、曲线的绘制,可是,在好像尚未感觉到那种3D游戏里一些能惊艳到本身的效果,即真实感还不是很足。这篇文章中介绍的光线追踪,是实现真实感必不可少的。拿下面的两张图片来对比c++
对比一下是否是被下面这张图片的效果惊艳到了?能够很明显感受到,下面的这个图片效果要好的多。这篇博客将介绍如何实现这样的效果。ide
这里暂时只介绍光线与球面和三角面片的求交测试
射线的方程:
\[ R(t) = A+tD \]
球面的隐式方程:
\[ (X-C)^2=r^2 \]
联立两式:
\[ (A+tD-C)^2=r^2 \]
而后经过判别式:\[\Delta=4[(A-C) \cdot D]^2 - 4(A-C)^2+r^2\]来判断是否相交。this
交点法向量:
\[ N=\frac{P-C}{||P-C||} \]spa
bool Sphere::intersectLocal( const ray& r, isect& i ) const { // YOUR CODE HERE: // 光线与球面相交 // Add sphere intersection code here. Vec3d A = r.getPosition(); Vec3d D = r.getDirection(); Vec3d C= Vec3<double>(); double _r = 1.0; double a = D.length2(); double b = 2 * (A - C) * D; double c = (A - C).length2() - _r; double delta = b * b - 4 * a * c; // it currently ignores all spheres and just return false. if (delta >= 0) { double t1 = (-b + sqrt(delta)) / (2 * a); double t2 = (-b - sqrt(delta)) / (2 * a); if (t1 <= RAY_EPSILON) return false; else { double t; if (t2 <= RAY_EPSILON) { t = t1; i.outsideTheObject = false; } else { t = t2; i.outsideTheObject = true; } // 焦点设置 i.obj = this; i.setT(t); Vec3d P = r.at(t); Vec3d Normal = P; if (D*Normal > 0) Normal = -Normal; Normal.normalize(); i.setN(Normal); return true; } } return false; }
射线的方程:
\[ R(t) = A+tD \]
三角面片点法式方程:
\[ N(p-p_1)=0 \]
联立两式得:
\[ t=\frac{N\cdot p_1 - N \cdot A}{n\cdot D} \]
求出t后,便获得交点坐标,而后可经过同向法来判别交点是否在平面内。debug
// Calculates and returns the normal of the triangle too. bool TrimeshFace::intersectLocal(const ray& r, isect& i) const { // YOUR CODE HERE: // Add triangle intersection code here. // it currently ignores all triangles and just return false. // // Note that you are only intersecting a single triangle, and the vertices // of the triangle are supplied to you by the trimesh class. // // You should retrieve the vertices using code like this: // // const Vec3d& a = parent->vertices[ids[0]]; // const Vec3d& b = parent->vertices[ids[1]]; // const Vec3d& c = parent->vertices[ids[2]]; const Vec3d& a = parent->vertices[ids[0]]; const Vec3d& b = parent->vertices[ids[1]]; const Vec3d& c = parent->vertices[ids[2]]; Vec3d edge1 = b - a; Vec3d edge2 = c - a; // 计算平面法向量 Vec3d nor = edge1 ^ edge2; nor.normalize(); // 判断是否与平面平行 float x = nor * r.getDirection(); if (x == 0) return false; // Ax + By + Cz = d float d = nor * a; float t = (d - nor * r.getPosition()) / x; if (t <= RAY_EPSILON) return false; Vec3d intersection_point = r.at(t); Vec3d edge3 = intersection_point - a; // 同向法判断是否在平面内 if (((b - a) ^ (intersection_point - a)) * nor <= 0) return false; else if (((c - b) ^ (intersection_point - b)) * nor <= 0) return false; else if (((a - c) ^ (intersection_point - c)) * nor <= 0) return false; else { //交点设置 i.obj = this; i.setT(t); i.setN(nor); return true; } }
固然,这里还可使用重心坐标法来实现3d
在现实场景中,光线也是会衰减的,好比看同一场景,距离远近不一样看到的清晰度也就不一样,这是距离衰减。还有阴影衰减,当有物体遮挡住部分光的时候,会造成必定的阴影,这就是阴影衰减产生的效果。rest
点光源:
\[ A_{j}^{d i s t}=\min \left\{1, \frac{1}{a_{j}+b_{j} r_{j}+c_{j} r_{j}^{2}}\right\} \]code
double PointLight::distanceAttenuation( const Vec3d& P ) const { // You'll need to modify this method to attenuate the intensity // of the light based on the distance between the source and the // point P. For now, we assume no attenuation and just return 1.0 Vec3d d = P - position; double r = d.length(); //距离 return min(1.0, 1.0 / (constantTerm + linearTerm * r + quadraticTerm * r*r)); // return 1.0; }
平行光源:orm
double DirectionalLight::distanceAttenuation( const Vec3d& P ) const { // distance to light is infinite, so f(di) goes to 0. Return 1. return 1.0; }
点光源:
首先判断光线是否被遮挡,而后再判断是否超出光强所能打到的距离
Vec3d PointLight::shadowAttenuation(const Vec3d& P) const { // YOUR CODE HERE: // You should implement shadow-handling code here. Vec3d d = getDirection(P); isect i; ray shadowRay(P, d); if (this->getScene()->intersect(shadowRay, i)) { double tLight = (P - position).length(); if (i.t < tLight) return Vec3d(0, 0, 0); else return Vec3d(1, 1, 1); } return Vec3d(1,1,1); }
平行光:
只需判断是否被遮挡便可
Vec3d DirectionalLight::shadowAttenuation( const Vec3d& P ) const { // YOUR CODE HERE: Vec3d d = getDirection(P); isect i; ray shadowRay(P, d); if (this->getScene()->intersect(shadowRay, i)) { return Vec3d(0, 0, 0); } // You should implement shadow-handling code here. return Vec3d(1,1,1); }
先来份伪代码
光线跟踪中的四种射线:
视线:由视点与象素(x,y)发出的射线
阴影测试线:物体表面上点与光源的连线
反射光线
折射光线
光线追踪的过程
由物体表面上一点P反射到视点的光强I为环境光的反射光强\(I_e\)、理想漫反射光强\(I_d\)、和镜面反射光\(I_s\)的总和,即
\[ I=I_ak_a + I_lk_d(L \cdot N)+k_s\sum_{i=1}^{m}[I_{pi}(R \cdot V)^n] \]
在washington CSE 457的课件中给出的公式为
\[ l_{\text {direct }}=k_{e}+k_{e} I_{L s}+\sum_{f} A_{j}^{\text {shadow}} A_{j}^{\text {dist}} I_{L j} B_{j}\left[k_{d}\left(\mathbf{N} \cdot \mathbf{L}_{j}\right)+k_{s}\left(\mathbf{N} \cdot \mathbf{H}_{j}\right)^{n_{s}}\right] \]
其中\(k_d\)项表示漫反射,采用Lamber模型,\(k_s\)项表示镜面反射
\[ I_{d}=I_{p} K_{d} *(L \cdot N) \]
\[ I_{s}=k_{s} I_{p}(R \cdot V)^{n} \]
便可写出下列代码
// Apply the Phong model to this point on the surface of the object, returning // the color of that point. Vec3d Material::shade( Scene *scene, const ray& r, const isect& i ) const { // YOUR CODE HERE // For now, this method just returns the diffuse color of the object. // This gives a single matte color for every distinct surface in the // scene, and that's it. Simple, but enough to get you started. // (It's also inconsistent with the Phong model...) // Your mission is to fill in this method with the rest of the phong // shading model, including the contributions of all the light sources. // You will need to call both distanceAttenuation() and shadowAttenuation() // somewhere in your code in order to compute shadows and light falloff. if( debugMode ) std::cout << "Debugging the Phong code (or lack thereof...)" << std::endl; Vec3d pos = r.at(i.t); Vec3d N = i.N; N.normalize(); Vec3d Ip, L, H, Atten; Vec3d shadow = ke(i) + prod(scene->ambient(), ka(i)); for (vector<Light*>::const_iterator litr = scene->beginLights(); litr != scene->endLights(); ++litr) { Light* pLight = *litr; Ip = pLight->getColor(pos); L = pLight->getDirection(pos); H = -r.getDirection() + L; H.normalize(); Atten = pLight->distanceAttenuation(pos)*pLight->shadowAttenuation(pos); shadow += prod(Atten, prod(Ip, kd(i)*(L*N) + ks(i)*pow(H*N, 256))); } return shadow; }
这里的反射指的是镜面反射
计算公式:
\[ R=2(V\cdot N)N-V \]
为何是这样呢?首先来看\(V\cdot N\),这里N是交点处的法向量,而且是单位向量,那个即视线在法向量上的投影,再乘法向量的两倍,获得的是平行四边形的对角线,减去V即是反射后的光线的方向。
跟反射方向同样都是公式推导
\[ \begin{array}{l}{\eta=\frac{\eta_{i}}{\eta_{t}}} \\ \eta_{i} \sin \theta_{i}=\eta_{t} \sin \theta_{t} \\ {\cos \theta_{i}=\mathbf{N} \cdot \mathbf{V}} \\ {\cos \theta_{t}=\sqrt{1-\eta^{2}\left(1-\cos ^{2} \theta_{i}\right)}} \\ {\mathbf{T}=\left(\eta \cos \theta_{i}-\cos \theta_{t}\right) \mathbf{N}-\eta \mathbf{V}}\end{array} \]
通过上述的介绍,很容易能够想到,何时终止光线追踪
该光线未碰到任何物体
该光线碰到了背景
光线在通过许屡次反射和折射之后,就会产生衰减,光线对于视点的光强贡献很小(小于某个设定值)。
光线反射或折射次数即跟踪深度大于必定值
所以,光线追踪的代码实现以下
// Do recursive ray tracing! You'll want to insert a lot of code here // (or places called from here) to handle reflection, refraction, etc etc. Vec3d RayTracer::traceRay( const ray& r, const Vec3d& thresh, int depth ) { isect i; if( scene->intersect( r, i ) && depth >= 0) { const Material& m = i.getMaterial(); //计算光源直射 Vec3d I = m.shade(scene, r, i); //计算反射递归 Vec3d Q = r.at(i.t); Vec3d R = r.getDirection() - 2 * (r.getDirection()*i.N)*i.N; R.normalize(); I += prod(m.kr(i), traceRay(ray(Q, R), thresh, depth - 1)); //计算折射递归 double cosThetaI = -i.N*r.getDirection(); double eta = (i.outsideTheObject) ? 1.0003 / m.index(i) : m.index(i) / 1.0003; if (eta*eta*(1 - cosThetaI * cosThetaI) < 1) { double cosThetaT = sqrt(1 - eta * eta*(1 - cosThetaI * cosThetaI)); Vec3d T = (eta*cosThetaI - cosThetaT)*i.N - eta * r.getDirection(); T.normalize(); I += prod(m.kt(i), traceRay(ray(Q, -T), thresh, depth - 1)); } return I; // An intersection occured! We've got work to do. For now, // this code gets the material for the surface that was intersected, // and asks that material to provide a color for the ray. // This is a great place to insert code for recursive ray tracing. // Instead of just returning the result of shade(), add some // more steps: add in the contributions from reflected and refracted // rays. //const Material& m = i.getMaterial(); //return m.shade(scene, r, i); } else { // No intersection. This ray travels to infinity, so we color // it according to the background color, which in this (simple) case // is just black. return Vec3d( 0.0, 0.0, 0.0 ); } }
到这里,光线追踪也就差很少介绍完了,这一系列博客也算是收尾了。那天在课上听其余同窗展现的的时候,说是个人世界有部分的开源源码,里面有一个能够实现光追的接口,有兴趣的小伙伴能够去康康,彷佛那个仅仅实现光追还没法达到很好的效果,还要加上路线追踪,emmmmm。。。。期末考完有空了我再去康康,明早图形学考试祝我好运 orz