模型视图变换时,法线向量要乘模型视图矩阵的逆转置矩阵【转】

模型视图变换时,法线向量要乘模型视图矩阵的逆转置矩阵

早前一直被这个问题困惑,可是本身推倒了不少遍也没推出来。
哎,在gameres上搜了3年前的谈话,后来在gamedev搜到了答案。
其实在计算机图形学中,只要是变换,不管平移,旋转,缩放,都是乘一个矩阵。
在模型视图变换时,顶点乘模型视图变换矩阵,而顶点对应的顶点法线向量(或其余的法线向量)则要乘模型视图矩阵的逆转置矩阵。
顶点和法线都是向量,他们的区别是什么?无非顶点是<x, y, z>表示缺省的<x, y, z, 1>,而法线向量是<x, y, z>表示缺省的<x, y, z, 0>。关于为何是这样,不用我说了吧,2个顶点向量减下看看就知道了。
从这点来看,确实不一样,或许就是这个不一样,形成了变换的不一样吧。
法线向量只能保证方向的一致性,而不能保证位置的一致性,因此,全部线向量必须以面的形式进行变换,以下:

Transforming Planes

If we have a plane vector n = [a, b, c, d] which describes a plane then for any point p = [x, y, z, 1] in that plane the follow equation holds:html

nt p = ax + by + cz + d = 0 app

If for a point p on the plane, we apply an invertible transformation R to get the transformed point p1, then the plane vector n1 of the transformed plane is given by applying a corresponding transformation Q to the original plane vector n where Q is unknown. post

p1 = R p
n1 = Q n orm

We can solve for Q by using the resulting plane equation:

n1t p1 = 0 htm

Begin by substituting for n1 and p1:

(Q n)t (R p) = 0
nt Qt R p = 0 blog

If Q t R = I then n t Q t R p = n t I p = n t p = 0 which is given.

Qt R = I
Qt = R-1
Q = (R-1)t get

Substituting Q back into our plane vector transformation equation we get:

n1 = Q n = (R-1)t n it

相关文章
相关标签/搜索