本篇主要介绍在Lua服务里调用skynet网络层底层接口的流程,Lua层的api主要在lualib/skynet/socket.lua,可参考官方wiki https://github.com/cloudwu/sk...。git
经过一个简单的例子说明Lua服务是如何最终调用到网络层底层接口的:
:github
`local socket = require “socket” local skynet = require "skynet" local function loop(fd) socket.start(fd) while true do local data = socket.readline('n') print(data, #data) end end skynet.start(function() local listen_fd = socket.listen(ip, hort) socket.start(listen_fd, function(fd, addr) print("connect fd[%d], addr[%s]", fd, addr) skynet.fork(loop, fd) end) end)`
在服务启动时,调用socket.listen监听。调用流程是:driver.listen(第7行)——>skynet_socket_listen(第17行)——>socket_server_listen(第29行)——>send_request(第47行),最后向发送管道写数据。Lua接口执行流程是:socket.lua -> lua-socket.c ->skynet_socket.c -> socket_server.capi
注:第34行,do_listen依次调用了unix网络系统接口socket,bind,listen。网络
`// lualib/skynet/socket.lua
function socket.listen(host, port, backlog)session
if port == nil then host, port = string.match(host, "([^:]+):(.+)$") port = tonumber(port) end return driver.listen(host, port, backlog)
end数据结构
// lualib-src/lua-socket.c
static int
llisten(lua_State *L) {socket
const char * host = luaL_checkstring(L,1); int port = luaL_checkinteger(L,2); int backlog = luaL_optinteger(L,3,BACKLOG); struct skynet_context * ctx = lua_touserdata(L, lua_upvalueindex(1)); int id = skynet_socket_listen(ctx, host,port,backlog); if (id < 0) { return luaL_error(L, "Listen error"); } lua_pushinteger(L,id); return 1;
}tcp
// skynet-src/skynet_socket.c
skynet_socket_listen(struct skynet_context ctx, const char host, int port, int backlog) {函数
uint32_t source = skynet_context_handle(ctx); return socket_server_listen(SOCKET_SERVER, source, host, port, backlog);
}oop
// skynet-src/socket_server.c
socket_server_listen(struct socket_server ss, uintptr_t opaque, const char addr, int port, int backlog) {
int fd = do_listen(addr, port, backlog); if (fd < 0) { return -1; } struct request_package request; int id = reserve_id(ss); if (id < 0) { close(fd); return id; } request.u.listen.opaque = opaque; request.u.listen.id = id; request.u.listen.fd = fd; send_request(ss, &request, 'L', sizeof(request.u.listen)); return id;
}`
skynet里的socket结构有几种状态:
#define SOCKET_TYPE_INVALID 0 //可以使用 #define SOCKET_TYPE_RESERVE 1 //已占用 #define SOCKET_TYPE_PLISTEN 2 //等待监听(监听套接字拥有) #define SOCKET_TYPE_LISTEN 3 //监听,可接受客户端的链接(监听套接字才拥有) #define SOCKET_TYPE_CONNECTING 4 //正在链接(connect失败时状态,tcp会尝试从新connect) #define SOCKET_TYPE_CONNECTED 5 //已链接,能够收发数据 #define SOCKET_TYPE_HALFCLOSE 6 #define SOCKET_TYPE_PACCEPT 7 //等待链接(链接套接字才拥有) #define SOCKET_TYPE_BIND 8
当工做线程执行socket.listen后,socket线程从接收管道读取数据,执行ctrl_cmd,调用listen_socket(第6行),此时该socket状态是SOCKET_TYPE_PLISTEN(第18行)
`// skynet-src/socket_server.c static int ctrl_cmd(struct socket_server *ss, struct socket_message *result) { ... case 'L': return listen_socket(ss,(struct request_listen *)buffer, result); ... } static int listen_socket(struct socket_server *ss, struct request_listen * request, struct socket_message *result) { int id = request->id; int listen_fd = request->fd; struct socket *s = new_fd(ss, id, listen_fd, PROTOCOL_TCP, request->opaque, false); if (s == NULL) { goto _failed; } s->type = SOCKET_TYPE_PLISTEN; return -1; ... }`
接着,Lua服务调用socket.start,最终socket线程执行start_socket,此时socket状态是SOCKET_TYPE_LISTEN,等待客户端的链接请求。
`// skynet-src/socket_server.c static int start_socket(struct socket_server *ss, struct request_start *request, struct socket_message *result) { ... if (s->type == SOCKET_TYPE_PACCEPT || s->type == SOCKET_TYPE_PLISTEN) { if (sp_add(ss->event_fd, s->fd, s)) { force_close(ss, s, &l, result); result->data = strerror(errno); return SOCKET_ERR; } s->type = (s->type == SOCKET_TYPE_PACCEPT) ? SOCKET_TYPE_CONNECTED : SOCKET_TYPE_LISTEN; s->opaque = request->opaque; result->data = "start"; return SOCKET_OPEN; } ... }`
当客户端发起链接请求后,epoll事件返回,调用report_accept(第5行)
第14行,调用unix网络系统接口accept,接受客户端的请求。因为客户端已发起链接,因此不会阻塞。
第16行,从socket池中获取可用的socket id
17-22行,初始化该socket,此时socket状态是SOCKET_TYPE_PACCEPT
`int socket_server_poll(struct socket_server *ss, struct socket_message * result, int * more) { ... case SOCKET_TYPE_LISTEN: { int ok = report_accept(ss, s, result); ... } // return 0 when failed, or -1 when file limit static int report_accept(struct socket_server *ss, struct socket *s, struct socket_message *result) { union sockaddr_all u; socklen_t len = sizeof(u); int client_fd = accept(s->fd, &u.s, &len); ... int id = reserve_id(ss); struct socket *ns = new_fd(ss, id, client_fd, PROTOCOL_TCP, s->opaque, false); ns->type = SOCKET_TYPE_PACCEPT; result->opaque = s->opaque; result->id = s->id; result->ud = id; result->data = NULL; ... return 1; }`
接着,Lua服务再次调用socket.start(id),此时id是链接的socket,而不是监听的socket。此时,socket状态是SOCKET_TYPE_CONNECTED,链接已经创建,能够收发数据。这就是整个socket链接过程。
至于怎么通知到 Lua服务稍后分析。
`// skynet-src/socket_server.c static int start_socket(struct socket_server *ss, struct request_start *request, struct socket_message *result) { ... s->type = (s->type == SOCKET_TYPE_PACCEPT) ? SOCKET_TYPE_CONNECTED : SOCKET_TYPE_LISTEN; ... }`
关闭socket,socket.close
发送数据有两个api,正常发送socket.write, 低优先级发送socket.lwrite。
socket线程在运行过程(socket_server_poll)中,当收到网络数据会调用forward_message_tcp
第19行,调用unix系统接口读取socket上的数据
21-24行,采用args-value形式构造result,opaque是Lua服务的地址,id是该socket在池中的索引,ud是实际读取到的字节数,data是数据
第25行,返回SOCKET_DATA,表示接收到数据。
`// skynet-src/socket_server.c int socket_server_poll(struct socket_server *ss, struct socket_message * result, int * more) { ... default: if (e->read) { int type; if (s->protocol == PROTOCOL_TCP) { type = forward_message_tcp(ss, s, &l, result); ... return type } static int forward_message_tcp(struct socket_server *ss, struct socket *s, struct socket_lock *l, struct socket_message * resu lt) { int sz = s->p.size; char * buffer = MALLOC(sz); int n = (int)read(s->fd, buffer, sz); ... result->opaque = s->opaque; result->id = s->id; result->ud = n; result->data = buffer; return SOCKET_DATA; }`
因为socket_server_poll返回的是SOCKET_DATA,调用forward_message(第11行),
23-26行,构造即将要发送的消息数据,用到了上面返回的result
28-32行,构造skynet消息结构,由于是在网络层发送的,不是具体的某个服务,因此source,session字段都设置成0便可
第34行,把消息发送给与socket对应的服务地址。
至此,网络消息通知给具体的Lua服务。
`// skynet-src/skynet_socket.c int skynet_socket_poll() { struct socket_server *ss = SOCKET_SERVER; assert(ss); struct socket_message result; int more = 1; int type = socket_server_poll(ss, &result, &more); switch (type) { case SOCKET_DATA: forward_message(SKYNET_SOCKET_TYPE_DATA, false, &result); break; ... return 1; } // mainloop thread static void forward_message(int type, bool padding, struct socket_message * result) { struct skynet_socket_message *sm; size_t sz = sizeof(*sm); ... sm = (struct skynet_socket_message *)skynet_malloc(sz); sm->type = type; sm->id = result->id; sm->ud = result->ud; ... struct skynet_message message; message.source = 0; message.session = 0; message.data = sm; message.sz = sz | ((size_t)PTYPE_SOCKET << MESSAGE_TYPE_SHIFT); if (skynet_context_push((uint32_t)result->opaque, &message)) { // todo: report somewhere to close socket // don't call skynet_socket_close here (It will block mainloop) skynet_free(sm->buffer); skynet_free(sm); } }`
当网络数据到达Lua服务时,lualib/skynet/socket.lua中提供了相应的处理方案。调用消息分发函数socket_message,网络数据类型包含正常数据传输(DATA),链接(CONNECT),关闭(CLOSE),错误(ERROR)等。
第15行,把客户端发过来的数据push到该socket的缓冲池中。
`-- lualib/skynet/socket.lua skynet.register_protocol { name = "socket", id = skynet.PTYPE_SOCKET, -- PTYPE_SOCKET = 6 unpack = driver.unpack, dispatch = function (_, _, t, ...) socket_message[t](...) end } -- SKYNET_SOCKET_TYPE_DATA = 1 socket_message[1] = function(id, size, data) local s = socket_pool[id] ... local sz = driver.push(s.buffer, buffer_pool, data, size) ... }`
socket.read(id, sz),从一个socket上读sz指定的字节数,若是缓冲池里有足够多的数据,从缓冲池里pop出直接返回(第5行),不然,暂停当前协程(第15行),当数据够或者链接断开时重启协程。
`-- lualib/skynet/socket.lua function socket.read(id, sz) local s = socket_pool[id] assert(s) ... local ret = driver.pop(s.buffer, buffer_pool, sz) if ret then return ret end if not s.connected then return false, driver.readall(s.buffer, buffer_pool) end assert(not s.read_required) s.read_required = sz suspend(s) ret = driver.pop(s.buffer, buffer_pool, sz) if ret then return ret else return false, driver.readall(s.buffer, buffer_pool) end end`
socket.readline(id, sep),从一个socket上读以sep分割的数据,默认是"n",即读一行数据。注:该api能够指定分隔符,不仅仅是一行数据。
socket.abandon(id),清除socket id在本服务内的数据结构,但不并关闭这个socket,用于把id转给其余服务控制。一般,会设计一个master服务接收外部链接,等链接上后再将socket分配给一个slave服务控制,减小master服务的压力。
socket库的使用流程通常是:
-- master服务 local listen_fd = socket.listen(ip, port) //监听一个地址 socket.start(listen_fd, function(fd, addr) slave.post.start(fd) //客户端链接上,转交给slave socket.abandon(fd) end) -- slave服务 function accept.start(fd) socket.start(fd) //接管socket ... end
最后,小编推荐本身的Linux、C/C++技术交流群:【960994558】整理了一些我的以为比较好的学习书籍、视频资料共享在里面(包括C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK等等.),有须要的能够自行添加哦!~