如下代码基于swoole4.4.5-alpha, php7.1.26
咱们按照执行流程去逐步分析swoole协程的实现, php程序是这样的:php
<?php go(function (){ Co::sleep(1); echo "a"; }); echo "c";
go其实是swoole_coroutine_create的别名:html
PHP_FALIAS(go, swoole_coroutine_create, arginfo_swoole_coroutine_create);
首先会执行zif_swoole_coroutine_create去建立协程:node
// 真正执行的函数 PHP_FUNCTION(swoole_coroutine_create) { ... // 解析参数 ZEND_PARSE_PARAMETERS_START(1, -1) Z_PARAM_FUNC(fci, fci_cache) Z_PARAM_VARIADIC('*', fci.params, fci.param_count) ZEND_PARSE_PARAMETERS_END_EX(RETURN_FALSE); ... long cid = PHPCoroutine::create(&fci_cache, fci.param_count, fci.params); if (sw_likely(cid > 0)) { RETURN_LONG(cid); } else { RETURN_FALSE; } } long PHPCoroutine::create(zend_fcall_info_cache *fci_cache, uint32_t argc, zval *argv) { ... // 保存匿名函数参数和执行结构 php_coro_args php_coro_args; php_coro_args.fci_cache = fci_cache; php_coro_args.argv = argv; php_coro_args.argc = argc; save_task(get_task()); // 保存php栈到当前task // 建立coroutine return Coroutine::create(main_func, (void*) &php_coro_args); }
php_coro_args是用来保存回调函数信息的结构:react
// 保存go()回调的结构体 struct php_coro_args { zend_fcall_info_cache *fci_cache; // 匿名函数信息 zval *argv; // 参数 uint32_t argc; // 参数数量 };
php_corutine::get_task()用来获取当前正在执行的任务, 第一次执行时, 获取的是初始化好的main_task:api
php_coro_task PHPCoroutine::main_task = {0}; // 获取当前的task, 没有则是主task static inline php_coro_task* get_task() { php_coro_task *task = (php_coro_task *) Coroutine::get_current_task(); return task ? task : &main_task; } static inline void* get_current_task() { return sw_likely(current) ? current->get_task() : nullptr; } inline void* get_task() { return task; }
save_task会将当前php栈信息保存到当前使用的task上, 当前使用的是main_task, 因此这些信息会被保存在main_task上:swoole
void PHPCoroutine::save_task(php_coro_task *task) { save_vm_stack(task); // 保存php栈 ... } inline void PHPCoroutine::save_vm_stack(php_coro_task *task) { task->bailout = EG(bailout); task->vm_stack_top = EG(vm_stack_top); // 当前栈顶 task->vm_stack_end = EG(vm_stack_end); // 栈底 task->vm_stack = EG(vm_stack); // 整个栈结构 task->vm_stack_page_size = EG(vm_stack_page_size); task->error_handling = EG(error_handling); task->exception_class = EG(exception_class); task->exception = EG(exception); }
php_coro_task这个结构用来保存当前任务的php栈:php7
struct php_coro_task { JMP_BUF *bailout; // 内部异常使用 zval *vm_stack_top; // 栈顶 zval *vm_stack_end; // 栈底 zend_vm_stack vm_stack; // 执行栈 size_t vm_stack_page_size; zend_execute_data *execute_data; zend_error_handling_t error_handling; zend_class_entry *exception_class; zend_object *exception; zend_output_globals *output_ptr; /* for array_walk non-reentrancy */ php_swoole_fci *array_walk_fci; swoole::Coroutine *co; // 属于哪一个coroutine std::stack<php_swoole_fci *> *defer_tasks; long pcid; zend_object *context; int64_t last_msec; zend_bool enable_scheduler; };
保存完当前php栈就能够开始建立coroutine了:并发
static inline long create(coroutine_func_t fn, void* args = nullptr) { return (new Coroutine(fn, args))->run(); } Coroutine(coroutine_func_t fn, void *private_data) : ctx(stack_size, fn, private_data) // 默认stack size 2M { cid = ++last_cid; // 分配协程id coroutines[cid] = this; // 当前对象指针存储在全局的corutines静态属性上 if (sw_unlikely(count() > peak_num)) // 更新峰值 { peak_num = count(); } }
首先, 会建立一个ctx对象, context对象主要用来管理c栈app
#define SW_DEFAULT_C_STACK_SIZE (2 *1024 * 1024) size_t Coroutine::stack_size = SW_DEFAULT_C_STACK_SIZE; ctx(stack_size, fn, private_data) Context::Context(size_t stack_size, coroutine_func_t fn, void* private_data) : fn_(fn), stack_size_(stack_size), private_data_(private_data) { end_ = false; // 标记协程是否已经执行完成 swap_ctx_ = nullptr; stack_ = (char*) sw_malloc(stack_size_); // 分配一块内存储存c栈, 默认2M ... void* sp = (void*) ((char*) stack_ + stack_size_); // 计算出栈顶地址即最高地址 ctx_ = make_fcontext(sp, stack_size_, (void (*)(intptr_t))&context_func); // 构建上下文 }
make_fcontext函数是boost.context库中提供的,由汇编编写,不一样平台有不一样实现,咱们这里使用的是make_x86_64_sysv_elf_gas.S这个文件:函数
传参使用的寄存器依次是rdi、rsi、rdx、rcx、r八、r9
make_fcontext: /* first arg of make_fcontext() == top of context-stack */ /* rax = sp */ movq %rdi, %rax /* shift address in RAX to lower 16 byte boundary */ /* rax = rax & -16 => rax = rax & (~0x10000 + 1) => rax = rax - rax%16, 其实就是按16对齐*/ andq $-16, %rax /* reserve space for context-data on context-stack */ /* size for fc_mxcsr .. RIP + return-address for context-function */ /* on context-function entry: (RSP -0x8) % 16 == 0 */ /*lea是“load effective address”的缩写, 简单的说,lea指令能够用来将一个内存地址直接赋给目的操做数, 例如:lea eax,[ebx+8]就是将ebx+8这个值直接赋给eax,而不是把ebx+8处的内存地址里的数据赋给eax。 而mov指令则偏偏相反,例如:mov eax,[ebx+8]则是把内存地址为ebx+8处的数据赋给eax。*/ /* rax = rax - 0x48, 预留0x48个字节 */ leaq -0x48(%rax), %rax /* third arg of make_fcontext() == address of context-function */ /* context_func函数地址放在rax+0x38处*/ movq %rdx, 0x38(%rax) /* save MMX control- and status-word */ stmxcsr (%rax) /* save x87 control-word */ fnstcw 0x4(%rax) /* compute abs address of label finish */ /* https://sourceware.org/binutils/docs/as/i386_002dMemory.html The x86-64 architecture adds an RIP (instruction pointer relative) addressing. This addressing mode is specified by using ‘rip’ as a base register. Only constant offsets are valid. For example: AT&T: ‘1234(%rip)’, Intel: ‘[rip + 1234]’ Points to the address 1234 bytes past the end of the current instruction. AT&T: ‘symbol(%rip)’, Intel: ‘[rip + symbol]’ Points to the symbol in RIP relative way, this is shorter than the default absolute addressing. */ /* rcx = finish */ leaq finish(%rip), %rcx /* save address of finish as return-address for context-function */ /* will be entered after context-function returns */ /* finish函数地址放在rax+0x40处 */ movq %rcx, 0x40(%rax) /*return rax*/ ret /* return pointer to context-data */ finish: /* exit code is zero */ xorq %rdi, %rdi /* exit application */ call _exit@PLT hlt
make_fcontext函数执行完以后, 用来保存上下文的内存布局是这样:
/**************************************************************************************** * |<- ctx_ ---------------------------------------------------------------------------------- * * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | * * ---------------------------------------------------------------------------------- * * | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | * * ---------------------------------------------------------------------------------- * * | fc_mxcsr|fc_x87_cw| | | | * * ---------------------------------------------------------------------------------- * * ---------------------------------------------------------------------------------- * * | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | * * ---------------------------------------------------------------------------------- * * | 0x20 | 0x24 | 0x28 | 0x2c | 0x30 | 0x34 | 0x38 | 0x3c | * * ---------------------------------------------------------------------------------- * * | | | | context_func | * * ---------------------------------------------------------------------------------- * * ---------------------------------------------------------------------------------- * * | 16 | 17 | | * * ---------------------------------------------------------------------------------- * * | 0x40 | 0x44 | | * * ---------------------------------------------------------------------------------- * * | finish | | * * ---------------------------------------------------------------------------------- * * * ****************************************************************************************/
Coroutine对象被实例化完以后开始执行run方法, run方法会将上一个执行了相关方法的Coroutine对象存入origin中, 并把current置为当前对象:
static sw_co_thread_local Coroutine* current; Coroutine *origin; inline long run() { long cid = this->cid; origin = current; // orign保存原来的对象 current = this; // current置为当前对象 ctx.swap_in(); // 换入 ... }
接下来是切换c栈的核心方法, swap_in和swap_out, 底层也是由boost.context库提供的, 先来看换入:
bool Context::swap_in() { jump_fcontext(&swap_ctx_, ctx_, (intptr_t) this, true); return true; } // jump_x86_64_sysv_elf_gas.S jump_fcontext: /* 当前寄存器压入栈, 注意, rbp上面实际上还有一个rip, 由于call jump_fcontext 等价于 push rip, jmp jump_fcontext. */ /* rip保存着下一条要执行的指令, 在这里就是jump_fcontext以后的return true */ pushq %rbp /* save RBP */ pushq %rbx /* save RBX */ pushq %r15 /* save R15 */ pushq %r14 /* save R14 */ pushq %r13 /* save R13 */ pushq %r12 /* save R12 */ /* prepare stack for FPU */ leaq -0x8(%rsp), %rsp /* test for flag preserve_fpu */ cmp $0, %rcx je 1f /* save MMX control- and status-word */ stmxcsr (%rsp) /* save x87 control-word */ fnstcw 0x4(%rsp) 1: /* store RSP (pointing to context-data) in RDI */ /* *swap_ctx_ = rsp, 保存栈顶位置 */ movq %rsp, (%rdi) /* restore RSP (pointing to context-data) from RSI */ /* rsp = ctx_, 这里将当前执行栈指向了刚刚经过make_fcontext构建出来的栈 */ movq %rsi, %rsp /* test for flag preserve_fpu */ cmp $0, %rcx je 2f /* restore MMX control- and status-word */ ldmxcsr (%rsp) /* restore x87 control-word */ fldcw 0x4(%rsp) 2: /* prepare stack for FPU */ leaq 0x8(%rsp), %rsp /* 将寄存器恢复重新栈上压入的值, 此次执行时这里还都是空的 */ popq %r12 /* restrore R12 */ popq %r13 /* restrore R13 */ popq %r14 /* restrore R14 */ popq %r15 /* restrore R15 */ popq %rbx /* restrore RBX */ popq %rbp /* restrore RBP */ /* restore return-address */ /* r8 = make_fcontext(往上看看make_fcontext结束后的内存布局图) */ popq %r8 /* use third arg as return-value after jump */ /* rax = this */ movq %rdx, %rax /* use third arg as first arg in context function */ /* rdi = this */ movq %rdx, %rdi /* indirect jump to context */ /* 执行context_func */ jmp *%r8
jump_fcontext执行完以后原来的栈内存布局是这样:
/**************************************************************************************** * |<-swap_ctx_ * * ---------------------------------------------------------------------------------- * * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | * * ---------------------------------------------------------------------------------- * * | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | * * ---------------------------------------------------------------------------------- * * | fc_mxcsr|fc_x87_cw| R12 | R13 | R14 | * * ---------------------------------------------------------------------------------- * * ---------------------------------------------------------------------------------- * * | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | * * ---------------------------------------------------------------------------------- * * | 0x20 | 0x24 | 0x28 | 0x2c | 0x30 | 0x34 | 0x38 | 0x3c | * * ---------------------------------------------------------------------------------- * * | R15 | RBX | RBP | RIP/return true | * * ---------------------------------------------------------------------------------- * * * ****************************************************************************************/
context_func有一个参数, jump_fcontext执行完后往rdi写入的this将做为参数给context_func使用, fn_, private_data_是构造ctx时传入的参数:
void Context::context_func(void *arg) { Context *_this = (Context *) arg; _this->fn_(_this->private_data_); // main_func(php_coro_args) _this->end_ = true; _this->swap_out(); }
main_func会为当前协程分配一个新的执行栈, 并将其与刚刚实例化好的Coroutine绑定, 而后执行协程的回调函数:
void PHPCoroutine::main_func(void *arg) { ... // 在EG上建立一个新的vmstack, 用于执行go()里的回调函数, 以前的执行栈已经被保存在main_task上了 vm_stack_init(); call = (zend_execute_data *) (EG(vm_stack_top)); task = (php_coro_task *) EG(vm_stack_top); EG(vm_stack_top) = (zval *) ((char *) call + PHP_CORO_TASK_SLOT * sizeof(zval)); // 为task预留位置 call = zend_vm_stack_push_call_frame(call_info, func, argc, object_or_called_scope); // 为参数分配栈空间 EG(bailout) = NULL; EG(current_execute_data) = call; EG(error_handling) = EH_NORMAL; EG(exception_class) = NULL; EG(exception) = NULL; save_vm_stack(task); // 保存vmstack到当前task上 record_last_msec(task); // 记录时间 task->output_ptr = NULL; task->array_walk_fci = NULL; task->co = Coroutine::get_current(); // 记录当前coroutine task->co->set_task((void *) task); // coroutine与当前task绑定 task->defer_tasks = nullptr; task->pcid = task->co->get_origin_cid(); // 记录上一个协程id task->context = nullptr; task->enable_scheduler = 1; if (EXPECTED(func->type == ZEND_USER_FUNCTION)) { ... // 初始化execute_data zend_init_func_execute_data(call, &func->op_array, retval); // 执行协程里的用户函数 zend_execute_ex(EG(current_execute_data)); } ... }
接下来就是执行用户回调函数生成的opcode了, 执行到Co::sleep(1)时会调用System::sleep(seconds), 这里面会为当前coroutine注册一个定时事件, 回调函数是sleep_timeout:
int System::sleep(double sec) { Coroutine* co = Coroutine::get_current_safe(); // 获取当前coroutine if (swoole_timer_add((long) (sec * 1000), SW_FALSE, sleep_timeout, co) == NULL) // 为当前couroutine添加一个定时事件 { return -1; } co->yield(); // 切换 return 0; } // 定时事件注册的回调 static void sleep_timeout(swTimer *timer, swTimer_node *tnode) { ((Coroutine *) tnode->data)->resume(); }
yield函数负责php栈和c栈的切换
void Coroutine::yield() { SW_ASSERT(current == this || on_bailout != nullptr); state = SW_CORO_WAITING; // 协程状态变为waiting if (sw_likely(on_yield)) { on_yield(task); // php栈切换 } current = origin; // 切换当前协程到上一个 ctx.swap_out(); // c栈切换 }
先来看php栈的切换, on_yield是初始化时已经注册好的函数
void PHPCoroutine::init() { Coroutine::set_on_yield(on_yield); Coroutine::set_on_resume(on_resume); Coroutine::set_on_close(on_close); } void PHPCoroutine::on_yield(void *arg) { php_coro_task *task = (php_coro_task *) arg; // 当前task php_coro_task *origin_task = get_origin_task(task); // 获取上一个task save_task(task); // 保存当前任务 restore_task(origin_task); // 恢复上一个任务 }
拿到上一个task就能够经过上面保存的执行信息恢复EG了, 程序很简单, 只要把vmstack和current_execute_data换回来就能够了:
void PHPCoroutine::restore_task(php_coro_task *task) { restore_vm_stack(task); ... } inline void PHPCoroutine::restore_vm_stack(php_coro_task *task) { EG(bailout) = task->bailout; EG(vm_stack_top) = task->vm_stack_top; EG(vm_stack_end) = task->vm_stack_end; EG(vm_stack) = task->vm_stack; EG(vm_stack_page_size) = task->vm_stack_page_size; EG(current_execute_data) = task->execute_data; EG(error_handling) = task->error_handling; EG(exception_class) = task->exception_class; EG(exception) = task->exception; ... }
这个时候php栈执行状态已经恢复到刚刚调用go()函数时的状态了(main_task), 再看看c栈切换是怎么处理的:
bool Context::swap_out() { jump_fcontext(&ctx_, swap_ctx_, (intptr_t) this, true); return true; }
回忆一下swap_in函数, swap_ctx_保存着执行swap_in时的rsp, ctx_保存着经过make_fcontext初始化好的栈顶位置, 再来看一遍jump_fcontext执行:
// jump_x86_64_sysv_elf_gas.S jump_fcontext: /* 当前寄存器压入栈, 注意, rbp上面实际上还有一个rip, 由于call jump_fcontext 等价于 push rip, jmp jump_fcontext. */ /* rip保存着下一条要执行的指令, 在这里就是swap_out里jump_fcontext以后的return true */ pushq %rbp /* save RBP */ pushq %rbx /* save RBX */ pushq %r15 /* save R15 */ pushq %r14 /* save R14 */ pushq %r13 /* save R13 */ pushq %r12 /* save R12 */ /* prepare stack for FPU */ leaq -0x8(%rsp), %rsp /* test for flag preserve_fpu */ cmp $0, %rcx je 1f /* save MMX control- and status-word */ stmxcsr (%rsp) /* save x87 control-word */ fnstcw 0x4(%rsp) 1: /* store RSP (pointing to context-data) in RDI */ /* *ctx_ = rsp, 保存栈顶位置 */ movq %rsp, (%rdi) /* restore RSP (pointing to context-data) from RSI */ /* rsp = swap_ctx_, 这里将当前执行栈指向了以前执行swap_in时的rsp */ movq %rsi, %rsp /* test for flag preserve_fpu */ cmp $0, %rcx je 2f /* restore MMX control- and status-word */ ldmxcsr (%rsp) /* restore x87 control-word */ fldcw 0x4(%rsp) 2: /* prepare stack for FPU */ leaq 0x8(%rsp), %rsp /* 将寄存器恢复到执行swap_in时的状态 */ popq %r12 /* restrore R12 */ popq %r13 /* restrore R13 */ popq %r14 /* restrore R14 */ popq %r15 /* restrore R15 */ popq %rbx /* restrore RBX */ popq %rbp /* restrore RBP */ /* restore return-address */ /* r8 = Context::swap_in::return true */ popq %r8 /* use third arg as return-value after jump */ /* rax = this */ movq %rdx, %rax /* use third arg as first arg in context function */ /* rdi = this */ movq %rdx, %rdi /* indirect jump to context */ /* 接着上一次swap_in的位置继续执行 */ jmp *%r8
这个时候php和c栈都已经恢复到执行swap_in的状态, 代码一路返回到zif_swoole_coroutine_create执行完毕:
bool Context::swap_in() { jump_fcontext(&swap_ctx_, ctx_, (intptr_t) this, true); return true; // 从这里开始继续执行, 回到以前调用它的函数 } inline long run() { ... ctx.swap_in(); // 返回 check_end(); // 检查协程是否已经执行完毕, 执行完毕须要作清理 return cid; } static inline long create(coroutine_func_t fn, void* args = nullptr) { return (new Coroutine(fn, args))->run(); } long PHPCoroutine::create(zend_fcall_info_cache *fci_cache, uint32_t argc, zval *argv) { ... return Coroutine::create(main_func, (void*) &php_coro_args); } PHP_FUNCTION(swoole_coroutine_create) { ... long cid = PHPCoroutine::create(&fci_cache, fci.param_count, fci.params); ... RETURN_LONG(cid); // 返回协程id }
由于execute_data已经切换回main_task上的主协程opcode了, 因此下一条opcode是 'echo "a"', 至关于把sleep后面的代码跳过了
<?php go(function (){ Co::sleep(1); echo "a"; }); echo "c"; // 从这里开始继续执行
等到必定时机, 定时器会调用sleep函数注册的回调函数sleep_timeout(调用时机后面会介绍), 唤醒协程继续运转:
// 定时事件注册的回调 static void sleep_timeout(swTimer *timer, swTimer_node *tnode) { ((Coroutine *) tnode->data)->resume(); } // 恢复整个执行环境 void Coroutine::resume() { ... state = SW_CORO_RUNNING; // 协程状态改成进行中 if (sw_likely(on_resume)) { on_resume(task); // 恢复php执行状态 } origin = current; current = this; ctx.swap_in(); // 恢复c栈 ... } // 恢复task void PHPCoroutine::on_resume(void *arg) { php_coro_task *task = (php_coro_task *) arg; php_coro_task *current_task = get_task(); save_task(current_task); // 保存当前任务 restore_task(task); // 恢复任务 record_last_msec(task); // 记录时间 }
zend_vm会读取到以后的opcode 'echo "a"', 继续执行
<?php go(function (){ Co::sleep(1); echo "a"; // 从这里开始继续执行 }); echo "c";
当前回调中的opcode被所有执行完毕以后, PHPCoroutine::main_func还会把以前注册的defer执行一遍, 顺序是FILO, 而后清理资源
void PHPCoroutine::main_func(void *arg) { ... if (EXPECTED(func->type == ZEND_USER_FUNCTION)) { ... // 协程回调函数执行完毕, 返回 zend_execute_ex(EG(current_execute_data)); } if (task->defer_tasks) { std::stack<php_swoole_fci *> *tasks = task->defer_tasks; while (!tasks->empty()) { php_swoole_fci *defer_fci = tasks->top(); tasks->pop(); // FILO // 调用defer注册的函数 if (UNEXPECTED(sw_zend_call_function_anyway(&defer_fci->fci, &defer_fci->fci_cache) != SUCCESS)) { ... } } } // resources release ... }
main_func执行完回到Context::context_func方法, 把当前协程标记为已结束, 再作一次swap_out回到刚刚swap_in的地方, 也就是resume方法, 以后去检查唤醒的协程有没有执行完毕, 检查只须要判断end_属性
void Context::context_func(void *arg) { Context *_this = (Context *) arg; _this->fn_(_this->private_data_); // main_func(closure)返回 _this->end_ = true; // 当前协程标记为已结束 _this->swap_out(); // 切换回main c栈 } void Coroutine::resume() { ... ctx.swap_in(); // 切换回这里 check_end(); // 检查协程是否已经结束 } inline void check_end() { if (ctx.is_end()) { close(); } } inline bool is_end() { return end_; }
close方法会清理为这个协程建立的vm_stack, 同时切回到main_task, 这时c栈和php栈都已经切换回主协程
void Coroutine::close() { ... state = SW_CORO_END; // 状态改成已结束 if (on_close) { on_close(task); } current = origin; coroutines.erase(cid); // 移除当前协程 delete this; } void PHPCoroutine::on_close(void *arg) { php_coro_task *task = (php_coro_task *) arg; php_coro_task *origin_task = get_origin_task(task); vm_stack_destroy(); // 销毁vm_stack restore_task(origin_task); // 还原main_task }
那么定时事件何时会被执行呢? 这是经过内部的Reactor事件循环去实现的, 下面来看具体实现:
建立协程时会判断reactor是否已经初始化, 没有初始化则会调用activate函数初始化reactor, activate函数大概有这几个步骤:
1.初始化reactor结构, 注册各类回调函数(读写事件采用对应平台效率最高的多路复用api, 封装成统一的回调函数有助于屏蔽不一样api实现细节)
2.经过php_swoole_register_shutdown_function("Swoole\Event::rshutdown")注册一个在request_shutdown阶段调用的函数(回忆一下php的生命周期, 脚本结束的时候会调用此函数), 实际上事件循环就在这个阶段执行
3.开启抢占式调度线程(这个后面会说)
long PHPCoroutine::create(zend_fcall_info_cache *fci_cache, uint32_t argc, zval *argv) { ... if (sw_unlikely(!active)) { activate(); } ... } inline void PHPCoroutine::activate() { ... /* init reactor and register event wait */ php_swoole_check_reactor(); /* replace interrupt function */ orig_interrupt_function = zend_interrupt_function; // 保存原来的中断回调函数 zend_interrupt_function = coro_interrupt_function; // 替换中断函数 // 开启抢占式调度 if (SWOOLE_G(enable_preemptive_scheduler) || config.enable_preemptive_scheduler) { /* create a thread to interrupt the coroutine that takes up too much time */ interrupt_thread_start(); } ... active = true; } static sw_inline int php_swoole_check_reactor() { ... if (sw_unlikely(!SwooleG.main_reactor)) { return php_swoole_reactor_init() == SW_OK ? 1 : -1; } ... } int php_swoole_reactor_init() { ... if (!SwooleG.main_reactor) { swoole_event_init(); SwooleG.main_reactor->wait_exit = 1; // 注册rshutdown函数 php_swoole_register_shutdown_function("Swoole\\Event::rshutdown"); } ... } #define sw_reactor() (SwooleG.main_reactor) #define SW_REACTOR_MAXEVENTS 4096 int swoole_event_init() { SwooleG.main_reactor = (swReactor *) sw_malloc(sizeof(swReactor)); if (swReactor_create(sw_reactor(), SW_REACTOR_MAXEVENTS) < 0) { ... } ... } int swReactor_create(swReactor *reactor, int max_event) { int ret; bzero(reactor, sizeof(swReactor)); #ifdef HAVE_EPOLL ret = swReactorEpoll_create(reactor, max_event); #elif defined(HAVE_KQUEUE) ret = swReactorKqueue_create(reactor, max_event); #elif defined(HAVE_POLL) ret = swReactorPoll_create(reactor, max_event); #else ret = swReactorSelect_create(reactor); #endif ... reactor->onTimeout = reactor_timeout; // 有定时器超时时触发的回调 ... Socket::init_reactor(reactor); ... } int swReactorEpoll_create(swReactor *reactor, int max_event_num) { ... //binding method reactor->add = swReactorEpoll_add; reactor->set = swReactorEpoll_set; reactor->del = swReactorEpoll_del; reactor->wait = swReactorEpoll_wait; reactor->free = swReactorEpoll_free; }
request_shutdown阶段会执行注册的Swoole\Event::rshutdown函数, swoole_event_rshutdown会执行以前注册的wait函数:
static PHP_FUNCTION(swoole_event_rshutdown) { /* prevent the program from jumping out of the rshutdown */ zend_try { PHP_FN(swoole_event_wait)(INTERNAL_FUNCTION_PARAM_PASSTHRU); } zend_end_try(); } int swoole_event_wait() { int retval = sw_reactor()->wait(sw_reactor(), NULL); swoole_event_free(); return retval; }
咱们再来看看定时事件的注册, 首先会初始化timer:
int System::sleep(double sec) { Coroutine* co = Coroutine::get_current_safe(); // 获取当前coroutine if (swoole_timer_add((long) (sec * 1000), SW_FALSE, sleep_timeout, co) == NULL) { ... } } swTimer_node* swoole_timer_add(long ms, uchar persistent, swTimerCallback callback, void *private_data) { return swTimer_add(sw_timer(), ms, persistent, private_data, callback); } swTimer_node* swTimer_add(swTimer *timer, long _msec, int interval, void *data, swTimerCallback callback) { if (sw_unlikely(!timer->initialized)) { if (sw_unlikely(swTimer_init(timer, _msec) != SW_OK)) // 初始化timer { return NULL; } } ... } static int swTimer_init(swTimer *timer, long msec) { ... timer->heap = swHeap_new(1024, SW_MIN_HEAP); // 初始化最小堆 timer->map = swHashMap_new(SW_HASHMAP_INIT_BUCKET_N, NULL); timer->_current_id = -1; // 当前定时器id timer->_next_msec = msec; // 定时器里最短的超时时间 timer->_next_id = 1; timer->round = 0; ret = swReactorTimer_init(SwooleG.main_reactor, timer, msec); ... } static int swReactorTimer_init(swReactor *reactor, swTimer *timer, long exec_msec) { reactor->check_timer = SW_TRUE; reactor->timeout_msec = exec_msec; // 定时器里最短的超时时间 reactor->timer = timer; timer->reactor = reactor; timer->set = swReactorTimer_set; timer->close = swReactorTimer_close; ... }
接着是添加事件, 须要注意的是:
1.time._next_msec和reactor.timeout_msec一直保持全部计时器里最短的超时时间(相对值)
2.tnode.exec_msec和tnode用最小堆来保存, 这样一来堆顶的元素就是最先超时的元素
swTimer_node* swTimer_add(swTimer *timer, long _msec, int interval, void *data, swTimerCallback callback) { swTimer_node *tnode = sw_malloc(sizeof(swTimer_node)); int64_t now_msec = swTimer_get_relative_msec(); tnode->data = data; tnode->type = SW_TIMER_TYPE_KERNEL; tnode->exec_msec = now_msec + _msec; // 绝对时间 tnode->interval = interval ? _msec : 0; // 是否须要一直调用 tnode->removed = 0; tnode->callback = callback; tnode->round = timer->round; tnode->dtor = NULL; if (timer->_next_msec < 0 || timer->_next_msec > _msec) // 必要时更新, 始终保持最小超时时间 { timer->set(timer, _msec); timer->_next_msec = _msec; } tnode->id = timer->_next_id++; tnode->heap_node = swHeap_push(timer->heap, tnode->exec_msec, tnode); // 放入堆, priority = tnode->exec_msec if (sw_unlikely(swHashMap_add_int(timer->map, tnode->id, tnode) != SW_OK)) // hashmap保存tnodeid和tnode映射关系 { ... } ... }
定时时间注册完就能够等待被事件循环执行了, 咱们以epoll为例:
使用epoll_wait等待fd读写事件, 传入reactor->timeout_msec, 等待fd事件到来
1.若是epoll_wait超时时还未获取到任何fd读写事件, 执行onTimeout函数, 处理定时事件
2.有fd事件则处理fd读写事件, 处理完此次因此触发的事件后, 进入下一次循环
static int swReactorEpoll_wait(swReactor *reactor, struct timeval *timeo) { ... reactor->running = 1; reactor->start = 1; while (reactor->running > 0) { ... n = epoll_wait(epoll_fd, events, max_event_num, reactor->timeout_msec); if (n < 0) { ... // 错误处理 } else if (n == 0) { reactor->onTimeout(reactor); } for (i = 0; i < n; i++) { ... // fd读写事件处理 } ... } return 0; }
若是这期间没有任何fd事件, 定时事件会被执行, onTimeout是以前已经注册过的函数reactor_timeout, swTimer_select函数会把当前因此已经到期的事件执行完再退出循环, 执行到上文咱们注册的sleep_timeout函数时, 就会唤醒由于sleep休眠的协程继续执行:
static void reactor_timeout(swReactor *reactor) { reactor_finish(reactor); ... } static void reactor_finish(swReactor *reactor) { //check timer if (reactor->check_timer) { swTimer_select(reactor->timer); } ... //the event loop is empty if (reactor->wait_exit && reactor->is_empty(reactor)) // 没有任务了, 退出循环 { reactor->running = 0; } } int swTimer_select(swTimer *timer) { int64_t now_msec = swTimer_get_relative_msec(); // 当前时间 while ((tmp = swHeap_top(timer->heap))) // 获取最先到期的事件 { tnode = tmp->data; if (tnode->exec_msec > now_msec) // 未到时间 { break; } if (!tnode->removed) { tnode->callback(timer, tnode); // 执行定时事件注册的回调函数 } timer->num--; swHeap_pop(timer->heap); swHashMap_del_int(timer->map, tnode->id); } ... }
到这里, 整个流程都已经介绍完了, 总结一下:
经过上面咱们能够知道, 若是协程里没有任何IO/定时事件, 实际上协程是没有切换时机的, 对于CPU密集型的场景,一些协程会由于得不到CPU时间片被饿死, Swoole 4.4引入了抢占式调度就是为了解决这个问题.
vm interrupt是php7.1.0后引入的执行机制, swoole就是使用这个特性实现的抢占式调度:
1.ZEND_VM_INTERRUPT_CHECK会在指令是jump和call的时候执行
2.ZEND_VM_INTERRUPT_CHECK会检查EG(vm_interrupt)这个标志位, 若是为1, 则触发zend_interrupt_function的执行
// php 7.1.26 src #define ZEND_VM_INTERRUPT_CHECK() do { \ if (UNEXPECTED(EG(vm_interrupt))) { \ ZEND_VM_INTERRUPT(); \ } \ } while (0) #define ZEND_VM_INTERRUPT() ZEND_VM_TAIL_CALL(zend_interrupt_helper_SPEC(ZEND_OPCODE_HANDLER_ARGS_PASSTHRU)); static ZEND_OPCODE_HANDLER_RET ZEND_FASTCALL zend_interrupt_helper_SPEC(ZEND_OPCODE_HANDLER_ARGS) { ... EG(vm_interrupt) = 0; if (zend_interrupt_function) { zend_interrupt_function(execute_data); } }
下面来看具体实现:
初始化:
1.保存原来的中断函数, zend_interrupt_function替换成新的中断函数
2.开启线程执行interrupt_thread_loop
3.interrupt_thread_loop里每隔5ms将EG(vm_interrupt)设置为1
inline void PHPCoroutine::activate() { ... /* replace interrupt function */ orig_interrupt_function = zend_interrupt_function; // 保存原来的中断回调函数 zend_interrupt_function = coro_interrupt_function; // 替换中断函数 // 开启抢占式调度 if (SWOOLE_G(enable_preemptive_scheduler) || config.enable_preemptive_scheduler) // 配置要开启enable_preemptive_scheduler选项 { /* create a thread to interrupt the coroutine that takes up too much time */ interrupt_thread_start(); } } void PHPCoroutine::interrupt_thread_start() { zend_vm_interrupt = &EG(vm_interrupt); interrupt_thread_running = true; if (pthread_create(&interrupt_thread_id, NULL, (void * (*)(void *)) interrupt_thread_loop, NULL) < 0) { ... } } static const uint8_t MAX_EXEC_MSEC = 10; void PHPCoroutine::interrupt_thread_loop() { static const useconds_t interval = (MAX_EXEC_MSEC / 2) * 1000; while (interrupt_thread_running) { *zend_vm_interrupt = 1; // EG(vm_interrupt) = 1 usleep(interval); // 休眠5ms } pthread_exit(0); }
中断函数coro_interrupt_function会检查当前的协程是否可调度(距离上一次切换时间超过10ms), 若是能够, 直接让出当前协程, 完成抢占调度
static void coro_interrupt_function(zend_execute_data *execute_data) { php_coro_task *task = PHPCoroutine::get_task(); if (task && task->co && PHPCoroutine::is_schedulable(task)) { task->co->yield(); // 让出当前协程 } if (orig_interrupt_function) { orig_interrupt_function(execute_data); // 执行原有的中断函数 } } static const uint8_t MAX_EXEC_MSEC = 10; static inline bool is_schedulable(php_coro_task *task) { // enable_scheduler属性为1而且已经连续执行超过10ms了 return task->enable_scheduler && (swTimer_get_absolute_msec() - task->last_msec > MAX_EXEC_MSEC); }