本文将主要介绍咱们平时最经常使用的线程池 ThreadPoolExecutor
,有可能你平时没有直接使用这个类,而是使用 Executors
的工厂方法建立线程池,虽然这样很简单,可是极可能由于这个线程池发生 OOM ,具体状况文中会详细介绍;html
ThreadPoolExecutor
的继承关系如图所示:java
其中:异步
executor(Runnable command)
异步接口,可是没有强制要求异步;ExecutorService
的默认实现;public class ThreadPoolExecutor extends AbstractExecutorService { private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); // 状态控制变量,核心 private final BlockingQueue<Runnable> workQueue; // 任务等待队列 private final HashSet<Worker> workers = new HashSet<Worker>(); // 工做线程集合 private volatile ThreadFactory threadFactory; // 线程构造工厂 private volatile RejectedExecutionHandler handler; // 拒绝策略 private volatile long keepAliveTime; // 空闲线程的存活时间(非核心线程) private volatile int corePoolSize; // 核心线程大小 private volatile int maximumPoolSize; // 工做线程最大容量 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.acc = System.getSecurityManager() == null ? null : AccessController.getContext(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; } ... }
这里已经能够大体看出 ThreadPoolExecutor
的结构了:源码分析
private final class Worker extends AbstractQueuedSynchronizer implements Runnable { final Thread thread; // 持有线程,只有在线程工厂运行失败时为空 Runnable firstTask; // 初始化任务,不为空的时候,任务直接运行,不在添加到队列 volatile long completedTasks; // 完成任务计数 Worker(Runnable firstTask) { setState(-1); // AQS 初始化状态 this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); } public void run() { runWorker(this); // 循环取任务执行 } ... // AQS 锁方法 }
这里很容易理解的是 thread
和 firstTask
;可是 Worker
还继承了 AQS
作了一个简易的互斥锁,主要是在中断或者 worker
状态改变的时候使用;具体 AQS
的详细说明能够参考,AbstractQueuedSynchronizer 源码分析 ;优化
ctl 控制变量(简记 c)是一个 AtomicInteger
类型的变量,由两部分信息组合而成(两个值互补影响,又能够经过简单的大小比较判断状态):this
源码以下:线程
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); private static final int COUNT_BITS = Integer.SIZE - 3; // 用来表示线程数量的位数 private static final int CAPACITY = (1 << COUNT_BITS) - 1; // 线程最大容量 // 状态量 private static final int RUNNING = -1 << COUNT_BITS; // 高位 111,第一位是符号位,1表示负数 private static final int SHUTDOWN = 0 << COUNT_BITS; // 高位 000 private static final int STOP = 1 << COUNT_BITS; // 高位 001 private static final int TIDYING = 2 << COUNT_BITS; // 高位 010 private static final int TERMINATED = 3 << COUNT_BITS; // 高位 011 private static int runStateOf(int c) { return c & ~CAPACITY; } // 运行状态,取前3位 private static int workerCountOf(int c) { return c & CAPACITY; } // 线程数量,取后29位 private static int ctlOf(int rs, int wc) { return rs | wc; } // 状态和数量合成 private static boolean runStateLessThan(int c, int s) { return c < s; } // 状态比较 private static boolean runStateAtLeast(int c, int s) { return c >= s; } private static boolean isRunning(int c) { return c < SHUTDOWN; } // RUNNING 是负数,必然小于 SHUTDOWN
代码中能够看到状态判断的时候都是直接比较的,这是由于 TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING
;他们的状态变迁关系以下:code
其中:htm
private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // 这里正常状况下,只要大于SHUTDOWN,则必然不能添加线程;可是这里作了一个优化, // 若是线程池还在继续处理任务,则能够添加线程加速处理, // SHUTDOWN 表示不接收新任务,可是还在继续处理, // firstTask 不为空时,是在添加线程的时候,firstTask 不入队,直接处理 // workQueue 不为空时,则还有任务须要处理 // 因此连起来就是 rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty() if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { int wc = workerCountOf(c); if (wc >= CAPACITY || // 容量超出,则返回 wc >= (core ? corePoolSize : maximumPoolSize)) return false; if (compareAndIncrementWorkerCount(c)) break retry; // 线程数增长成功,则跳出循环 c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) // 若是线程状态改变时,重头开始重试 continue retry; } } // 此时线程计数,增长成功 boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { // 线程建立失败时,直接退出 final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { int rs = runStateOf(ctl.get()); if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { // 这里一样检查上面的优化条件 if (t.isAlive()) // 若是线程已经启动,则状态错误; throw new IllegalThreadStateException(); workers.add(w); int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; // 记录工做线程的最大数,统计峰值用 workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { t.start(); // 启动线程 workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); // 添加失败清除 } return workerStarted; }
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { // 若是小于核心线程,直接添加 if (addWorker(command, true)) return; c = ctl.get(); } if (isRunning(c) && workQueue.offer(command)) { // 任务入队 int recheck = ctl.get(); if (!isRunning(recheck) && remove(command)) // 再次检查,状态不是RUNNING的时候,拒绝并移除任务 reject(command); else if (workerCountOf(recheck) == 0) // 这里是防止状态为SHUTDOWN时,已经添加的任务没法执行 addWorker(null, false); } else if (!addWorker(command, false)) // 任务入队失败时,直接添加线程,并运行 reject(command); }
流程图以下:blog
因此影响任务提交的因数就有:
工做线程启动以后,首先处理 firstTask 任务(特别注意,这个任务是没有入队的),而后从 workQueue 中取出任务处理,队列为空时,超时等待 keepAliveTime ;
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { while (task != null || (task = getTask()) != null) { // 获取任务 w.lock(); // 整体条件表示线程池中止的时候,须要中断线程, // 若是没有中止,则清除中断状态,确保未中断 if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { beforeExecute(wt, task); // 回调方法 Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); // 回调方法 } } finally { task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); // 退出时清理 } }
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { int c = ctl.get(); int rs = runStateOf(c); // 此处保证 SHUTDOWN 状态继续处理任务,STOP 状态中止处理 if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; // 是否关闭空闲线程 if ((wc > maximumPoolSize || (timed && timedOut)) // 若是线程大于最大容量,或者容许关闭,且第一次没取到 && (wc > 1 || workQueue.isEmpty())) { // 返回空,最后由 processWorkerExit 清理 if (compareAndDecrementWorkerCount(c)) return null; continue; } try { // 是否超时获取 Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } }
public void shutdown() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); // 检查中止权限 advanceRunState(SHUTDOWN); // 设置线程池状态 interruptIdleWorkers(); // 设置全部线程中断 onShutdown(); // hook for ScheduledThreadPoolExecutor } finally { mainLock.unlock(); } tryTerminate(); // 继续执行等待队列中的任务,完毕后设置 TERMINATED 状态 }
public List<Runnable> shutdownNow() { List<Runnable> tasks; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); advanceRunState(STOP); interruptWorkers(); tasks = drainQueue(); // 清空全部等待队列的任务,并返回 } finally { mainLock.unlock(); } tryTerminate(); return tasks; }
能够看到 shutdownNow
只比 shutdown
多了,清空等待队列,可是正在执行的任务仍是会继续执行;
以前提到了,提交任务失败的时候,会执行拒绝操做,在 JDk 中为咱们提供了四种策略:
RejectedExecutionException
异常,这是默认的拒绝策略;另外就是根据线程池参数的不一样,Executors
为咱们提供了4种典型的用法:
SingleThreadExecutor:单线程的线程池,提交任务顺序执行;
public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); }
如代码所示,就是最大线程、核心线程都是1,和无界队列组成的线程池,提交任务的时候就会,直接将任务加入队列顺序执行;
FixedThreadPool:固定线程数量线程池:
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); }
同 SingleThreadExecutor
同样,只是线程数量由用户决定;
CachedThreadPool:动态调节线程池;
public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); }
这里核心线程为0,队列是 SynchronousQueue
容量为1的阻塞队列,而线程数最大,存活60s,因此有任务的时候直接建立新的线程,超时空闲60s;
ScheduledThreadPool:定时任务线程池,功能同 Timer
相似,具体细节后续还会讲到;