python异步编程之asyncio(百万并发)

1、asyncio 下面经过举例来对比同步代码和异步代码编写方面的差别,其次看下二者性能上的差距,咱们使用sleep(1)模拟耗时1秒的io操做。html

同步代码:session

import time def hello(): time.sleep(1) def run(): for i in range(5): hello() print('Hello World:%s' % time.time()) # 任何伟大的代码都是从Hello World 开始的! if name == 'main': run()并发

输出:(间隔差很少是1s)app

Hello World:1527595175.4728756 Hello World:1527595176.473001 Hello World:1527595177.473494 Hello World:1527595178.4739306 Hello World:1527595179.474482异步

异步代码:async

import time import asyncio # 定义异步函数 async def hello(): asyncio.sleep(1) print('Hello World:%s' % time.time()) def run(): for i in range(5): loop.run_until_complete(hello())函数

loop = asyncio.get_event_loop() if name =='main': run()oop

输出:post

Hello World:1527595104.8338501 Hello World:1527595104.8338501 Hello World:1527595104.8338501 Hello World:1527595104.8338501 Hello World:1527595104.8338501性能

async def 用来定义异步函数,其内部有异步操做。每一个线程有一个事件循环,主线程调用asyncio.get_event_loop()时会建立事件循环,你须要把异步的任务丢给这个循环的run_until_complete()方法,事件循环会安排协同程序的执行。

2、aiohttp   若是须要并发http请求怎么办呢,一般是用requests,但requests是同步的库,若是想异步的话须要引入aiohttp。这里引入一个类,from aiohttp import ClientSession,首先要创建一个session对象,而后用session对象去打开网页。session能够进行多项操做,好比post, get, put, head等。

基本用法:

async with ClientSession() as session: async with session.get(url) as response:

aiohttp异步实现的例子:

import asyncio from aiohttp import ClientSession

tasks = [] url = "https://www.baidu.com/{}" async def hello(url): async with ClientSession() as session: async with session.get(url) as response: response = await response.read() print(response) if name == 'main': loop = asyncio.get_event_loop() loop.run_until_complete(hello(url))

首先async def 关键字定义了这是个异步函数,await 关键字加在须要等待的操做前面,response.read()等待request响应,是个耗IO操做。而后使用ClientSession类发起http请求。

多连接异步访问

若是咱们须要请求多个URL该怎么办呢,同步的作法访问多个URL只须要加个for循环就能够了。但异步的实现方式并没那么容易,在以前的基础上须要将hello()包装在asyncio的Future对象中,而后将Future对象列表做为任务传递给事件循环。

import time import asyncio from aiohttp import ClientSession

tasks = [] url = "https://www.baidu.com/{}" async def hello(url): async with ClientSession() as session: async with session.get(url) as response: response = await response.read() # print(response) print('Hello World:%s' % time.time()) def run(): for i in range(5): task = asyncio.ensure_future(hello(url.format(i))) tasks.append(task) if name == 'main': loop = asyncio.get_event_loop() run() loop.run_until_complete(asyncio.wait(tasks))

输出:

Hello World:1527754874.8915546 Hello World:1527754874.899039 Hello World:1527754874.90004 Hello World:1527754874.9095392 Hello World:1527754874.9190395

收集http响应

好了,上面介绍了访问不一样连接的异步实现方式,可是咱们只是发出了请求,若是要把响应一一收集到一个列表中,最后保存到本地或者打印出来要怎么实现呢,可经过asyncio.gather(*tasks)将响应所有收集起来,具体经过下面实例来演示。

import time import asyncio from aiohttp import ClientSession

tasks = [] url = "https://www.baidu.com/{}" async def hello(url): async with ClientSession() as session: async with session.get(url) as response: # print(response) print('Hello World:%s' % time.time()) return await response.read() def run(): for i in range(5): task = asyncio.ensure_future(hello(url.format(i))) tasks.append(task) result = loop.run_until_complete(asyncio.gather(*tasks)) print(result) if name == 'main': loop = asyncio.get_event_loop() run()

输出:

Hello World:1527765369.0785167 Hello World:1527765369.0845182 Hello World:1527765369.0910277 Hello World:1527765369.0920424 Hello World:1527765369.097017 [b'<!DOCTYPE html>\r\n<!--STATUS OK-->\r\n<html>\r\n<head>\r\n......

异常解决

假如你的并发达到1000个,程序会报错:ValueError: too many file descriptors in select()。这个报错的缘由是由于 Python 调取的 select 对打开的文件字符有最大长度限制。这里咱们有两种方法解决这个问题:1.咱们能够须要限制并发数量。一次不要塞那么多任务,或者限制最大并发数量。2.咱们能够使用回调的方式。这里我的推荐限制并发数的方法,设置并发数为500或者600,处理速度更快。

相关文章
相关标签/搜索