获取APPL,MSFT,GOOG的股票数据markdown
stocks = pd.DataFrame({"Date": apple["Date"], "AAPL": apple["Adj Close"], "MSFT": microsoft["Adj Close"], "GOOG": google["Adj Close"]}).set_index("Date") print(stocks.head())
date | AAPL | GOOG | MSFT |
---|---|---|---|
2016-01-04 | 102.612183 | 741.840027 | 53.015032 |
2016-01-05 | 100.040792 | 742.580017 | 53.256889 |
2016-01-06 | 98.083025 | 743.619995 | 52.289462 |
2016-01-07 | 93.943473 | 726.390015 | 50.470697 |
2016-01-08 | 94.440222 | 714.469971 | 50.625489 |
1 多只股票对比
作出图形app
stocks.plot(grid = True) plt.show()
因为google的股价比较高,因此致使了Microsoft和Apple股票波动变小。一个解决的方法是使用不一样的刻度线。函数
stocks.plot(secondary_y = ["AAPL", "MSFT"], grid = True)
还有的更好的方法是画出收益图google
#df.apply(arg)将会把函数参数应用到数据框的每一列,而后再返回一个数据框 #在这行代码中,lambda中的x是一个series stock_return = stocks.apply(lambda x: x / x[0]) stock_return.head()
作出波动图spa
stock_return.plot(grid = True).axhline(y = 1, color = "black", lw = 2)
经过这个图咱们能够看到每个股票相对于初始价格的收益,咱们还能够看到这些股票的波动是相关的。
咱们还能够作出股票的天天的变化图code
stock_change = stocks.apply(lambda x: np.log(x) - np.log(x.shift(1))) # shift moves dates back by 1.
2 股票均线图图片
stocks["AAPL"].plot(label="APPL") apple["20d"] = np.round(apple["Close"].rolling(window = 20, center = False).mean(), 2).plot(label="20Average") apple["50d"] = np.round(apple["Close"].rolling(window = 50, center = False).mean(), 2).plot(label="50Average") plt.legend() plt.show()