本文是对 Swift Algorithm Club 翻译的一篇文章。
Swift Algorithm Club是 raywenderlich.com网站出品的用Swift实现算法和数据结构的开源项目,目前在GitHub上有18000+⭐️,我初略统计了一下,大概有一百左右个的算法和数据结构,基本上常见的都包含了,是iOSer学习算法和数据结构不错的资源。
🐙andyRon/swift-algorithm-club-cn是我对Swift Algorithm Club,边学习边翻译的项目。因为能力有限,如发现错误或翻译不妥,请指正,欢迎pull request。也欢迎有兴趣、有时间的小伙伴一块儿参与翻译和学习🤓。固然也欢迎加⭐️,🤩🤩🤩🤨🤪。
本文的翻译原文和代码能够查看🐙swift-algorithm-club-cn/Union-Findgit
并查集(Union-Find)github
并查集是一种数据结构,能够跟踪一组元素,它们分布在几个不相交(非重叠)子集合中。 它也被称为不相交集数据结构。算法
这是什么意思呢? 例如,并查集数据结构能够跟踪如下集合:swift
[ a, b, f, k ]
[ e ]
[ g, d, c ]
[ i, j ]
复制代码
这些集合是不相交的,由于它们没有共同的成员。数组
并查集支持三个基本操做:数据结构
Find(A):肯定元素A所在的子集。例如,find(d)
将返回子集 [ g, d, c ]
。app
Union(A, B):将包含 A 和 B 的两个子集合并为一个子集。 例如,union(d, j)
表示将 [g, d, c]
和 [i, j]
组合成更大的集合 [g, d, c, i, j]
。学习
AddSet(A):添加仅包含元素A的新子集合 。 例如,addSet(h)
会添加一个新的集合[ h ]
。优化
该数据结构的最多见应用是跟踪无向图的连通份量。 它还用于实现Kruskal算法的有效版本,以查找图的最小生成树。网站
并查集能够经过多种方式实现,但咱们将看一个高效且易于理解的实现:Weighted Quick Union。
PS:并查集 的多个实现已包含在playground .
public struct UnionFind<T: Hashable> {
private var index = [T: Int]()
private var parent = [Int]()
private var size = [Int]()
}
复制代码
咱们的并查集数据结构其实是一个森林,其中每一个子集由树表示。
基于咱们的目的,咱们只须要跟踪每一个树节点的父节点,而不是子节点。 为此,咱们使用数组parent
,那么parent[i]
是节点i
的父节点索引。
示例:若是parent
看起来像这样,
parent [ 1, 1, 1, 0, 2, 0, 6, 6, 6 ]
i 0 1 2 3 4 5 6 7 8
复制代码
而后树结构看起来像:
1 6
/ \ / \
0 2 7 8
/ \ /
3 5 4
复制代码
这片森林中有两棵树,每棵树对应一组元素。 (注意:因为ASCII的限制,树在这里显示为二叉树,但状况不必定如此。)
咱们为每一个子集提供惟一的编号以识别它。 该数字是该子集树的根节点的索引。 在示例中,节点1
是第一棵树的根节点,6
是第二棵树的根节点。
因此在这个例子中咱们有两个子集,第一个带有标签1
,第二个带有标签6
。 Find操做实际上返回了set的标签,而不是其内容。
请注意,根节点的parent[]
指向自身。 因此parent[1] = 1
和 parent [6] = 6
。 这就是咱们如何判断那些是根节点的方法。
让咱们看一下这些基本操做的实现,从开始添加新集。
public mutating func addSetWith(_ element: T) {
index[element] = parent.count // 1
parent.append(parent.count) // 2
size.append(1) // 3
}
复制代码
添加新元素时,实际上会添加一个仅包含该元素的新子集。
咱们在index
字典中保存新元素的索引。 这让咱们能够在之后快速查找元素。
而后咱们将该索引添加到parent
数组中,为该集合构建一个新树。这里,parent[i]
指向自身,由于表示新集合的树只包含一个节点,固然这是该树的根节点。
size[i]
是树的节点数,其根位于索引i
。 对于新集合,这是1,由于它只包含一个元素。 咱们将在Union操做中使用size
数组。
一般咱们想肯定咱们是否已经有一个包含给定元素的集合。 这就是Find操做所作的。 在咱们的UnionFind
数据结构中,它被称为setOf()
:
public mutating func setOf(_ element: T) -> Int? {
if let indexOfElement = index[element] {
return setByIndex(indexOfElement)
} else {
return nil
}
}
复制代码
这会在index
字典中查找元素的索引,而后使用辅助方法来查找此元素所属的集合:
private mutating func setByIndex(_ index: Int) -> Int {
if parent[index] == index { // 1
return index
} else {
parent[index] = setByIndex(parent[index]) // 2
return parent[index] // 3
}
}
复制代码
由于咱们正在处理树结构,因此这边使用的是递归方法。
回想一下,每一个集合由树表示,而且根节点的索引用做标识集合的数字。 咱们将找到咱们要搜索的元素所属的树的根节点,并返回其索引。
首先,咱们检查给定索引是否表明根节点(即“父”指向节点自己的节点)。 若是是这样,咱们就完成了。
不然,咱们以递归方式在当前节点的父节点上调用此方法。而后咱们作了一个很是重要的事情:咱们用根节点的索引覆盖当前节点的父节点,实际上将节点直接从新链接到树的根节点。下次咱们调用此方法时,它将执行得更快,由于树的根路径如今要短得多。 若是没有这种优化,这种方法的复杂性就是O(n),但如今结合尺寸优化(在Union部分中说明)它几乎是O(1)。
咱们返回根节点的索引做为结果。
这是我说明的意思。 如今树看起来像这样:
咱们调用setOf(4)
。 要找到根节点,咱们必须首先转到节点2
而后转到节点7
。 (元素的索引标记为红色。)
在调用setOf(4)
期间,树被重组为以下所示:
如今若是咱们须要再次调用setOf(4)
,咱们就再也不须要经过节点2
再到根节点了。 所以,当您使用Union-Find数据结构时,它会优化自身。 太酷了!
还有一个辅助方法来检查两个元素是否在同一个集合中:
public mutating func inSameSet(_ firstElement: T, and secondElement: T) -> Bool {
if let firstSet = setOf(firstElement), let secondSet = setOf(secondElement) {
return firstSet == secondSet
} else {
return false
}
}
复制代码
这会调用setOf()
,也会优化树。
最后的操做是 Union,它将两集合并为一组更大的集合。
public mutating func unionSetsContaining(_ firstElement: T, and secondElement: T) {
if let firstSet = setOf(firstElement), let secondSet = setOf(secondElement) { // 1
if firstSet != secondSet { // 2
if size[firstSet] < size[secondSet] { // 3
parent[firstSet] = secondSet // 4
size[secondSet] += size[firstSet] // 5
} else {
parent[secondSet] = firstSet
size[firstSet] += size[secondSet]
}
}
}
}
复制代码
下面是它的工做原理:
咱们找到每一个元素所属的集合。请记住,这给了咱们两个整数:parent
数组中根节点的索引。
检查这些集合是否相等,若是相等,合并就没有意义。
这是大小优化的来源(加权)。咱们但愿保持树尽量浅,因此咱们老是将较小的树附加到较大树的根部。为了肯定哪一个是较小的树,咱们按照它们的大小比较树。
这里咱们将较小的树附加到较大树的根部。
更新较大树的大小,由于它只添加了一堆节点。
插图可能有助于更好地理解这一点。 假设咱们有这两个集合,每一个都有本身的树:
如今咱们调用 unionSetsContaining(4, and:3)
。 较小的树与较大的树相连:
请注意,由于咱们在方法的开头调用setOf()
,因此在该过程当中也对树进行了优化 - 节点3
如今直接挂在根之上。
具备优化的Union只须要几乎 O(1) 时间。
private mutating func setByIndex(_ index: Int) -> Int {
if index != parent[index] {
// Updating parent index while looking up the index of parent.
parent[index] = setByIndex(parent[index])
}
return parent[index]
}
复制代码
路径压缩有助于保持树很是平坦,所以查找操做可能只须要__O(1)__ 。
Data Structure | Union | Find |
---|---|---|
Quick Find | N | 1 |
Quick Union | Tree height | Tree height |
Weighted Quick Union | lgN | lgN |
Weighted Quick Union + Path Compression | very close, but not O(1) | very close, but not O(1) |
Algorithm | Worst-case time |
---|---|
Quick Find | M N |
Quick Union | M N |
Weighted Quick Union | N + M lgN |
Weighted Quick Union + Path Compression | (M + N) lgN |
有关如何使用此便捷数据结构的更多示例,请参阅 playground。
做者:Artur Antonov ,Yi Ding
翻译:Andy Ron
校对:Andy Ron