dropout的隐式偏置(为什么要使用dropout)

现代的深度神经网络通常具有海量参数,甚至高于训练数据的大小。这就意味着,这些深度网络有着强烈的过拟合倾向。缓解这一倾向的技术有很多,包括L1、L2正则、及早停止、组归一化,以及dropout。在训练阶段,dropout随机丢弃隐藏神经元及其连接,以打破神经元间的共同适应。尽管dropout在深度神经网络的训练中取得了巨大的成功,关于dropout如何在深度学习中提供正则化机制,目前这方面的理论解释
相关文章
相关标签/搜索