离心泵水力设计——叶轮设计——1 叶轮进出口直径

1 叶轮设计计算

Q = 200 m 3 / h = ( 200 / 3600 ) m 3 / s = 0.0556 m 3 / s Q=200m^3/h=(200/3600)m^3/s=0.0556m^3/s html

1.1 肯定泵进出口直径

泵进口直径 m m mm

泵进口直径也叫泵吸入口直径,是指泵吸入法兰处管的内径。可用下式计算。
D s = K s Q n 3 = ( 4 5 ) 200 / 3600 2900 3 = 107.0 133.8 m m D_s=K_s\sqrt[3]{\frac{Q}{n}}=(4\sim5)\sqrt[3]{\frac{200/3600}{2900}}=107.0\sim133.8mm 其中 K s = 4 5 K_s=4\sim5 ,取 D s = 125 m m D_s=125mm ,该直径应从标准法兰中选取。es6

泵出口直径 m m mm

泵出口直径也叫泵排出口径,是指泵排出口法兰处管道内径。通常用下式计算。
D d = K d Q n 3 = ( 3.5 4.5 ) 200 / 3600 2900 3 = 93.7 120.4 m m D_d=K_d\sqrt[3]{\frac{Q}{n}}=(3.5\sim4.5)\sqrt[3]{\frac{200/3600}{2900}}=93.7\sim120.4mm 其中 K d = 3.5 4.5 K_d=3.5\sim4.5 ,取 D d = 100 m m D_d=100mm ,该直径应从标准法兰中选取。web

泵进口速度 m / s m/s

v s = 4 Q D s 2 π = 4 × 200 / 3600 0.12 5 2 × π = 4.5271 m / s v_s=\frac{4Q}{D_s^2\pi}=\frac{4\times200/3600}{0.125^2\times\pi}=4.5271m/s app

泵出口速度 m / s m/s

v d = 4 Q D d 2 π = 4 × 200 / 3600 0.10 0 2 × π = 7.0736 m / s v_d=\frac{4Q}{D_d^2\pi}=\frac{4\times200/3600}{0.100^2\times\pi}=7.0736m/s ide

1.2 汽蚀计算

泵安装高度 m m

h g = p a ρ g h c p v ρ g N P S H a = 10.33 0.5 0.24 7.5 = 2.09 m h_g=\frac{p_a}{\rho g}-h_c-\frac{p_v}{\rho g}-NPSH_a=10.33-0.5-0.24-7.5=2.09m h c = 0.5 m h_c=0.5m ,装置汽蚀余量 N P S H a NPSH_a 假设为 7.5 m 7.5m svg

泵汽蚀余量 m m

N P S H r = N P S H a / 1.3 = 7.5 / 1.3 = 5.77 m NPSH_r=NPSH_a/1.3=7.5/1.3=5.77m spa

汽蚀比转数

C = 5.62 n Q N P S H r 3 / 4 = 5.62 × 2900 × 200 / 3600 5.7 7 3 / 4 = 1032 C=\frac{5.62n\sqrt{Q}}{NPSH_r^{3/4}}=\frac{5.62\times2900\times\sqrt{200/3600}}{5.77^{3/4}}=1032 设计

1.3 计算比转数

n s = 3.65 n Q H 3 / 4 = 3.65 × 2900 × 200 / 3600 8 4 3 / 4 = 89.9177 90 n_s=\frac{3.65n\sqrt{Q}}{H^{3/4}}=\frac{3.65\times{2900}\times\sqrt{200/3600}}{84^{3/4}}=89.9177\approx90 orm

1.4 效率的肯定

机械损失(轴承损失、密封损失、圆盘摩擦损失,皆为克服摩擦力所消耗的功率)
容积损失(叶轮进出口的压力差致使有一部分流体q从出口流经泵腔从口环处流向进口,从而循环往复,不参与到外部流动中去,从而白白耗费功率,至关于减小了容积)
水力损失(水力摩擦损失(沿程阻力)和冲击、脱流、速度方向及大小变化等引发的水力损失(局部损失)所消耗的能量,与流动状态相关)xml

水力效率

η h = 1 + 0.08351 lg Q n 3 = 1 + 0.08351 lg 200 / 3600 2900 3 = 86.87 % \eta_h=1+0.08351\lg\sqrt[3]{\frac{Q}{n}}=1+0.08351\lg\sqrt[3]{\frac{200/3600}{2900}}=86.87\% 注意: lg ( ) \lg() 为以10为底的对数

容积效率

η V = 1 1 + 0.68 n s 2 / 3 = 1 1 + 0.68 × 89.917 7 2 / 3 = 96.72 % \eta_{_V}=\frac{1}{1+0.68n_s^{-2/3}}=\frac{1}{1+0.68\times89.9177^{-2/3}}=96.72\%

圆盘损失效率

η m = 1 0.07 1 ( n s / 100 ) 7 / 6 = 1 0.07 1 ( 89.9177 / 100 ) 7 / 6 = 92.08 % \eta_m^\prime=1-0.07\frac{1}{(n_s/100)^{7/6}}=1-0.07\frac{1}{(89.9177/100)^{7/6}}=92.08\%

机械效率

η m = η m = η m 0.02 = 0.9208 0.02 = 90.08 % \eta_m=\eta_m^\prime-轴承、填料损失=\eta_m^\prime-0.02=0.9208-0.02=90.08\%

总效率

η = η m η V η h = 0.9008 × 0.9672 × 0.8687 = 75.69 % \eta=\eta_m\eta_{_V}\eta_h=0.9008\times0.9672\times0.8687=75.69\%
注意到这个泵实际的效率是80%,因此理论和实际差距仍是蛮大的。

1.5 肯定功率

轴功率 k W kW

P = ρ g Q H 1000 η = 9.81 × 1 0 3 × 200 / 3600 × 84 1000 × 75.69 % = 60.48 k W P=\frac{\rho gQH}{1000\eta}=\frac{9.81\times10^3\times200/3600\times84}{1000\times75.69\%}=60.48kW

电机功率 k W kW

P g = k η t P = 1.10 1.0 × 60.48 = 66.53 k W P_g=\frac{k}{\eta_t}P=\frac{1.10}{1.0}\times60.48=66.53kW 其中 k k η t \eta_t 查表可得:
因为 P > 55 k W P>55kW ,查得电动机余量系数 k = 1.10 k=1.10
因为电机直联传动,传动效率 η t = 1 \eta_t=1
查表选取标准电机功率为 75 k W 75kW

扭矩 N m N\cdot m

M n = 9550 P c n = 9550 × 1.2 × 66.53 2900 = 262.91 N m M_n=9550\frac{P_c}{n}=9550\times\frac{1.2\times66.53}{2900}=262.91N\cdot m

最小轴径 m m mm

d = M n 0.2 [ τ ] 3 = 262.91 0.2 × 70 × 1 0 6 3 = 0.0266 m 28 m m d=\sqrt[3]{\frac{M_n}{0.2[\tau]}}=\sqrt[3]{\frac{262.91}{0.2\times70\times10^6}}=0.0266m\approx28mm 材料选用 40 C r 40Cr ,许用切应力 [ τ ] = 63.7 73.5 M P a = 70 M P a [\tau]=63.7\sim73.5MPa=70MPa 。取轮毂直径 d h = 28 m m d_h=28mm

1.6 初步计算叶轮主要尺寸

进口当量直径 m m mm

D 0 = k 0 Q n 3 = 4.0 × 200 / 3600 2900 3 = 107.0 m m 110 m m D_0=k_0\sqrt[3]{\frac{Q}{n}}=4.0\times\sqrt[3]{\frac{200/3600}{2900}}=107.0mm\approx110mm 系数 k 0 k_0 选取方法:
若果主要考虑效率,取为 3.5 4.0 3.5\sim4.0
若是兼顾效率和汽蚀,取为 4.0 4.5 4.0\sim4.5
若是主要考虑汽蚀,取为 4.5 5.0 4.5\sim5.0

进口直径 m m mm

D j = D 0 = 110 m m D_j=D_0=110mm 因为本算例是单级悬臂结构的离心泵,故叶轮没有轮毂,因此进口直径和当量直径相等。而对于叶轮有轮毂(穿轴叶轮)的状况,应用下式计算叶轮进口直径
D j = D 0 2 + d h 2 D_j=\sqrt{D_0^2+d_h^2}

叶轮外径 m m mm

k D = 9.35 k D 2 ( n s 100 ) 1 / 2 = 9.35 × 1.009 × ( 90 100 ) 1 / 2 = 9.9445 k_D=9.35k_{D2}\left(\frac{n_s}{100}\right)^{-1/2}=9.35\times1.009\times\left(\frac{90}{100}\right)^{-1/2}=9.9445 其中 D 2 D_2 的修正系数 k D 2 k_{D2} 查表8-12获得 n s = 90 n_s=90 下的 k D 2 = 1.009 k_{D2}=1.009
D 2 = k D Q n 3 = 9.9445 × 200 / 3600 2900 3 = 0.2661 m = 266.1 m m D_2=k_D\sqrt[3]{\frac{Q}{n}}=9.9445\times\sqrt[3]{\frac{200/3600}{2900}}=0.2661m=266.1mm D 2 = 265 m m D_2=265mm

叶轮出口宽度 m m mm

k b = 0.64 k b 2 ( n s 100 ) 5 / 6 = 0.64 × 1.139 × ( 90 100 ) 5 / 6 = 0.6677 k_b=0.64k_{b2}\left(\frac{n_s}{100}\right)^{5/6}=0.64\times1.139\times\left(\frac{90}{100}\right)^{5/6}=0.6677 其中 b 2 b_2 的修正系数 k b 2 k_{b2} 查表8-13获得 n s = 90 n_s=90 下的 k b 2 = 1.139 k_{b2}=1.139
b 2 = k b Q n 3 = 0.6677 × 200 / 3600 2900 3 = 0.0179 m = 17.9 m m b_2=k_b\sqrt[3]{\frac{Q}{n}}=0.6677\times\sqrt[3]{\frac{200/3600}{2900}}=0.0179m=17.9mm b 2 = 18 m m b_2=18mm

叶片出口角 ° \degree

β 2 = 27 ° \beta_2=27\degree 通常离心泵 β 2 = 18 40 ° \beta_2=18\sim40\degree ,选取 β 2 = 27 ° \beta_2=27\degree

叶片数(枚)

z = 6.5 ( D 2 + D 1 D 2 D 1 ) sin β 1 + β 2 2 = 6.5 × ( 265 + 110 265 110 ) sin 25 + 27 2 = 6.8937 7 z=6.5\left(\frac{D_2+D_1}{D_2-D_1}\right)\sin\frac{\beta_1+\beta_2}{2}=6.5\times\left(\frac{265+110}{265-110}\right)\sin\frac{25+27}{2}=6.8937\approx7 选取 β 1 = 25 ° \beta_1=25\degree ,将叶片数圆整为7枚。

1.7 精算叶轮外径 第一次

参考关醒凡《现代泵理论与设计》中262页8.3.3节

理论扬程 m m

H t = H η h = 84 0.8687 = 96.70 m H_t=\frac{H}{\eta_h}=\frac{84}{0.8687}=96.70m

修正系数

ψ = α ( 1 + β 2 60 ) = 0.7 × ( 1 + 27 60 ) = 1.105 \psi=\alpha\left(1+\frac{\beta_2}{60}\right)=0.7\times\left(1+\frac{27}{60}\right)=1.105 α = 0.7 \alpha=0.7 α \alpha 的选取与泵的结构形式有关,导叶式压水室 0.6 0.6 ,蜗壳式压水室 0.65 0.85 0.65\sim0.85 ,环形压水室 0.85 1.0 0.85\sim1.0

静矩 m 2 m^2

s = i = 1 n Δ s i R i = R 2 2 R 1 2 2 = ( 0.265 / 2 ) 2 ( 0.110 / 2 ) 2 2 = 0.0072656 m 2 s=\sum_{i=1}^{n}\Delta s_iR_i=\frac{R_2^2-R_1^2}{2}=\frac{(0.265/2)^2-(0.110/2)^2}{2}=0.0072656m^2

有限叶片修正系数

P = ψ R 2 2 z s = 1.105 × ( 0.265 / 2 ) 2 7 × 7.2656 × 1 0 3 = 0.3504 P=\psi\frac{R_2^2}{zs}=1.105\times\frac{(0.265/2)^2}{7\times7.2656\times10^{-3}}=0.3504

无穷叶片数理论扬程 m m

H t = ( 1 + P ) H t = ( 1 + 0.3504 ) × 96.70 = 130.58 m H_{t\infin}=(1+P)H_t=(1+0.3504)\times96.70=130.58m

叶片出口排挤系数

ψ 2 = 1 z δ π D 2 × 1 + ( cot ( β 2 ) sin ( λ 2 ) ) 2 = 1 7 × 4 π × 265 × 1 + ( cot ( 27 ° ) sin ( 90 ° ) ) 2 = 0.9259 \psi_2=1-\frac{z\delta}{\pi D_2}\times\sqrt{1+\left(\frac{\cot(\beta_2)}{\sin(\lambda_2)}\right)^2}=1-\frac{7\times4}{\pi\times265}\times\sqrt{1+\left(\frac{\cot(27\degree)}{\sin(90\degree)}\right)^2}=0.9259 取叶轮出口真实厚度 δ 2 = 4 m m \delta_2=4mm ,叶轮出口轴面截线与流线夹角 λ 2 = 90 ° \lambda_2=90\degree

出口轴面速度 m / s m/s

v m 2 = Q π D 2 b 2 ψ 2 η V = 200 / 3600 π × 0.265 × 0.018 × 0.9259 × 0.9672 = 4.1398 m / s v_{m2}=\frac{Q}{\pi D_2b_2\psi_2\eta_{_V}}=\frac{200/3600}{\pi\times0.265\times0.018\times0.9259\times0.9672}=4.1398m/s

出口圆周速度 m / s m/s

u 2 = v m 2 2 tan β 2 + ( v m 2 2 tan β 2 ) 2 + g H t = 4.1398 2 × tan 27 ° + ( 4.1398 2 × tan 27 ° ) 2 + 9.8 × 130.58 = 40.0831 m / s u_2=\frac{v_{m2}}{2\tan\beta_2}+\sqrt{\left(\frac{v_{m2}}{2\tan\beta_2}\right)^2+gH_{t\infin}}=\frac{4.1398}{2\times\tan27\degree}+\sqrt{\left(\frac{4.1398}{2\times\tan27\degree}\right)^2+9.8\times130.58}=40.0831m/s

出口直径 m m mm

D 2 = 60 u 2 π n = 60 × 40.0831 π × 2900 = 0.2640 m = 264.0 m m D_2=\frac{60u_2}{\pi n}=\frac{60\times40.0831}{\pi\times2900}=0.2640m=264.0mm
与假定的 D 2 = 265 m m D_2=265mm 很是接近,故再也不从新计算,取 D 2 = 265 m m D_2=265mm 便可。
注意:实际泵的 D 2 = 255 m m D_2=255mm ,并不是 265 m m 265mm ,理论和实际差异不小。

1.8 叶轮出口速度

出口轴面速度 m / s m/s

v m 2 = Q π D 2 b 2 ψ 2 η V = 200 / 3600 π × 0.265 × 0.018 × 0.9259 × 0.9672 = 4.1398 m / s v_{m2}=\frac{Q}{\pi D_2b_2\psi_2\eta_V}=\frac{200/3600}{\pi\times0.265\times0.018\times0.9259\times0.9672}=4.1398m/s

出口圆周速度 m / s m/s

u 2 = v m 2 2 tan β 2 + ( v m 2 2 tan β 2 ) 2 + g H t = 4.1398 2 × tan 27 ° + ( 4.1398 2 × tan 27 ° ) 2 + 9.8 × 130.58 = 40.0831 m / s u_2=\frac{v_{m2}}{2\tan\beta_2}+\sqrt{\left(\frac{v_{m2}}{2\tan\beta_2}\right)^2+gH_{t\infin}}=\frac{4.1398}{2\times\tan27\degree}+\sqrt{\left(\frac{4.1398}{2\times\tan27\degree}\right)^2+9.8\times130.58}=40.0831m/s

出口圆周分速度 m / s m/s

v u 2 = g H t u 2 = 9.81 × 96.70 40.0831 = 23.6665 m / s v_{u2}=\frac{gH_t}{u_2}=\frac{9.81\times96.70}{40.0831}=23.6665m/s

无穷叶片数出口圆周分速度 m / s m/s

v u 2 = g H t u 2 = 9.81 × 130.58 40.0831 = 31.9584 m / s v_{u2\infin}=\frac{gH_{t\infin}}{u_2}=\frac{9.81\times130.58}{40.0831}=31.9584m/s