Structuring Machine Learning Projects-Week2

Week2 1. Carrying out error analysis 对已经建立的机器学习模型进行错误分析(error analysis)十分必要,而且有针对性地、正确地进行error analysis更加重要。 举个例子,猫类识别问题,已经建立的模型的错误率为10%。为了提高正确率,我们发现该模型会将一些狗类图片错误分类成猫。一种常规解决办法是扩大狗类样本,增强模型对够类(负样本)的训练。但
相关文章
相关标签/搜索