P5173 传球

 

题目背景

临近中考,pG的班主任决定上一节体育课,放松一下。html

题解:https://blog.csdn.net/kkkksc03/article/details/85008120web

题目描述

老师带着pG的同窗们一块儿作传球游戏。app

游戏规则是这样的: nn 个同窗站成一个圆圈,其中的一个同窗手里拿着一个球,当老师吹哨子时开始传球,每一个同窗能够把球传给本身左右的两个同窗中的一个(左右任意),当老师再次吹哨子时,传球中止,此时,拿着球没有传出去的那个同窗就是败者,要给你们表演一个节目。oop

pG提出一个有趣的问题:有多少种不一样的传球方法可使得从pG手里开始传的球,传了 mm 次之后,又回到pG手里。两种传球方法被视做不一样的方法,当且仅当这两种方法中,接到球的同窗按接球顺序组成的序列是不一样的。好比有三个同窗 11 号、 22 号、 33 号,并假设pG为 11 号,球传了 33 次回到pG手里的方式有 1 -> 2 -> 3 -> 11−>2>3>1和 1 -> 3 -> 2 -> 11−>3>2>1 ,共22 种。spa

输入输出格式

输入格式:
 .net

 

一行,有两个用空格隔开的整数 n,mn,mcode

 

输出格式:
 orm

 

11 个整数,表示符合题意的方法数。htm

因为答案可能过大,对10^9+7109+7取模。blog

 

输入输出样例

输入样例#1:  复制
3 3
输出样例#1:  复制
2
输入样例#2:  复制
30 30
输出样例#2:  复制
155117522
输入样例#3:  复制
1234 12345678
输出样例#3:  复制
424074635

说明

对于8%的数据,n \le 100,m \le 10^4n100,m104.

对于100%的数据,n \le 3500,m \le 10^9n3500,m109.

数据有必定梯度。

【题意】

n个石子堆排成一排,每次能够将连续的最少L堆,最多R堆石子合并在一块儿,消耗的代价为要合并的石子总数。

求合并成1堆的最小代价,若是没法作到输出0

 

【分析】

思路0:

TLE(8分)

    cin>>n>>m;
    f[0][0]=1;
    for(int i=1;i<=m;i++){
        for(int j=0;j<n;j++){
            f[i&1][j]=(f[i-1&1][(j-1+n)%n]+f[i-1&1][(j+1)%n])%mod;
        }
    }
    cout<<f[m&1][0];

 

思路1:

 

 

思路2:

 

 

 

思路3:

 ——摘自洛谷

 

【代码】

 思路3的

#pragma GCC optimize("Ofast,fast-math,unroll-loops")
#include<cstdio>
#include<cstring>
using namespace std;
const int N=10000|1;
const int mod=1e9+7;
int n,m,a[N],ans[N];
inline void plusx(int &x,int y){
    x+=y;if(x>=mod) x-=mod;
}
inline void PolyMul(int *a,int *b,int *c){
    int t[N];memset(t,0,sizeof(int)*(n<<1));
    for(int i=0;i<n;i++){
        if(a[i]){
            for(int j=0;j<n;j++){
                plusx(t[i+j],(long long)a[i]*b[j]%mod);
            }
        }
    }
    for(int i=0;i<n;i++) c[i]=t[i];
    for(int i=n;i<n<<1;i++) plusx(c[i-n],t[i]);
}
int main(){
    scanf("%d%d",&n,&m);
    a[1]=a[n-1]=1;ans[0]=1;
    for(;m;m>>=1,PolyMul(a,a,a)) if(m&1) PolyMul(ans,a,ans);
    printf("%d",ans[0]);
    return 0;
} 
相关文章
相关标签/搜索