JavaShuo
栏目
标签
《DropBlock: A regularization method for convolutional networks》笔记
时间 2020-12-24
原文
原文链接
Introduction Dropout的思想是随机失活一部分激活单元,让输出的feature或feature map丢失一些信息,使得网络能够关注更多的有辨别能力的特征,而不是只关注某几个特征,从而使得网络更加鲁棒,从另一方面来说,dropout起到了正则化的作用。 Dropout应用到卷积网络的feature map上,具体操作是在每个feature map上随机失活部分神经元。DropBlo
>>阅读原文<<
相关文章
1.
DropBlock: A regularization method for convolutional networks
2.
(原)DropBlock A regularization method for convolutional networks
3.
DropBlock: A regularization method for convolutional networks论文解读
4.
HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs--论文笔记
5.
Regularization method for machine learning
6.
【论文笔记】Fully Convolutional Networks for Semantic Segmentation
7.
Deformable Convolutional Networks笔记
8.
Learning Convolutional Neural Networks for Graphs论文笔记
9.
学习笔记:Fully Convolutional Networks for Segmantic Segmentation
10.
Improved Regularization of Convolutional Neural Networks with Cutout论文笔记
更多相关文章...
•
Scala for循环
-
Scala教程
•
ASP.NET Razor - 标记
-
ASP.NET 教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
☆基于Java Instrument的Agent实现
相关标签/搜索
networks
convolutional
regularization
dropblock
method
a'+'a
笔记
method...in
ipv4.method
MyBatis教程
Redis教程
MySQL教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
[最佳实践]了解 Eolinker 如何助力远程办公
2.
katalon studio 安装教程
3.
精通hibernate(harness hibernate oreilly)中的一个”错误“
4.
ECharts立体圆柱型
5.
零拷贝总结
6.
6 传输层
7.
Github协作图想
8.
Cannot load 32-bit SWT libraries on 64-bit JVM
9.
IntelliJ IDEA 找其历史版本
10.
Unity3D(二)游戏对象及组件
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
DropBlock: A regularization method for convolutional networks
2.
(原)DropBlock A regularization method for convolutional networks
3.
DropBlock: A regularization method for convolutional networks论文解读
4.
HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs--论文笔记
5.
Regularization method for machine learning
6.
【论文笔记】Fully Convolutional Networks for Semantic Segmentation
7.
Deformable Convolutional Networks笔记
8.
Learning Convolutional Neural Networks for Graphs论文笔记
9.
学习笔记:Fully Convolutional Networks for Segmantic Segmentation
10.
Improved Regularization of Convolutional Neural Networks with Cutout论文笔记
>>更多相关文章<<