转载请注明做者:梦里风林
Google Machine Learning Recipes 7
官方中文博客 - 视频地址
Github工程地址 https://github.com/ahangchen/GoogleML
欢迎Star,也欢迎到Issue区讨论html
mnist = learn.datasets.load_dataset('mnist')
恩,就是这么简单,一行代码下载解压mnist数据,每一个img已经灰度化成长784的数组,每一个label已经one-hot成长度10的数组python
在个人深度学习笔记看One-hot是什么东西git
data = mnist.train.images labels = np.asarray(mnist.train.labels, dtype=np.int32) test_data = mnist.test.images test_labels = np.asarray(mnist.test.labels, dtype=np.int32) max_examples = 10000 data = data[:max_examples] labels = labels[:max_examples]
def display(i): img = test_data[i] plt.title('Example %d. Label: %d' % (i, test_labels[i])) plt.imshow(img.reshape((28, 28)), cmap=plt.cm.gray_r) plt.show()
用matplotlib展现灰度图github
feature_columns = learn.infer_real_valued_columns_from_input(data)
classifier = learn.LinearClassifier(feature_columns=feature_columns, n_classes=10) classifier.fit(data, labels, batch_size=100, steps=1000)
注意要制定n_classes为labels的数量web
最后可能性最高的label就会做为预测输出chrome
传入测试集,预测,评估分类效果docker
result = classifier.evaluate(test_data, test_labels) print result["accuracy"]
速度很是快,并且准确率达到91.4%数组
能够只预测某张图,并查看预测是否跟实际图形一致浏览器
# here's one it gets right print ("Predicted %d, Label: %d" % (classifier.predict(test_data[0]), test_labels[0])) display(0) # and one it gets wrong print ("Predicted %d, Label: %d" % (classifier.predict(test_data[8]), test_labels[8])) display(8)
weights = classifier.weights_ a.imshow(weights.T[i].reshape(28, 28), cmap=plt.cm.seismic)