关于CLH大量使用到的Unsafe的CAS用法,头两个入参是this和xxOffset,翻了一下牛逼网友的给的代码大概是处理一个内存对齐的问题,整个操做中涉及到offset(dest)有两个部分java
mov edx, dest ..... cmpxchg dword ptr [edx], ecx ;ecx寄存器放置exchange_value
Unsafe不面向普通开发者,上来就检查你的类加载器是否是null(native)node
先mark一下这句话,其中AbstractOwnableSynchronizer
就是保存有排斥用的Thread
成员数组
* You may also find the inherited methods from {@link * AbstractOwnableSynchronizer} useful to keep track of the thread * owning an exclusive synchronizer. You are encouraged to use them * -- this enables monitoring and diagnostic tools to assist users in * determining which threads hold locks.
A thread may try to acquire if it is first in the queue.(这是一个FIFO机制)并发
CLH锁的入队是原子性的(源码中使用CAS(新的节点,tail)实现替换) Insertion into a CLH queue requires only a single atomic operation on "tail",且出队也是原子性的,dequeuing involves only updating the "head",但还须要处理后继 in part to deal with possible cancellation due to timeouts and interrupts,全部的信息都用volatile的waitStatus来表示,比方说取消(timeout or interrupt)是1,SIGNAL(当前的后继须要唤醒,注意有特殊的要求, unpark its successor when it releases or cancels)为-1,而-2 / -3 涉及到Condition的设计,这里暂且保留说明app
链表设计中prev
用于处理取消操做(LAZY),next
用于处理阻塞操做,当须要wakeup时就沿着next来跑(其中有一点checking backwards from the atomically updated "tail" when a node's successor appears to be null的情形暂留-->UPD.问题后面说明了)less
nextWaiter
和next
有必定区别,前者是一个简单的node,然后者是volatile,具体用途彷佛不止一种,有一种用法是判断是否共享/独占nextWaiter == SHARED
工具
state
和status
又有啥区别啊(The synchronization state.好含糊啊,推测是可重入设计中的资源状态(UPD.确实是个含糊的概念,这是要交由实现类来具体使用的))ui
CLH队列有独占(null
)和共享(一个空的Node()
)两种模式,分别为ReentranceLock和Semaphore/CyclicBarrier等线程通讯工具提供实现基类this
CLH locks are normally used forspinlocksatom
A node is signalled when its predecessor releases.
enqueue操做是经过CAS来实现双向链表的,详见line583:enq
(好奇队列为空时设立head的操做,大概是一种lazy设计)
为何unpark须要从后往前遍历,须要看并发状况下的原子性,当CAStail为新的node时,原tail的next并不指向真正的tail,而prev保证了必然能遍历到全部的node(再次给大佬跪了,懵逼了很久orz),UPD.还有一点是cancelAcquire时node.next=node
,此时若是有unpark的冲突会死掉,而prev是正常工做的
private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { // 恰好发生意外 新的tail.prev确定有了,但旧的tail.next仍是null t.next = node; return t; } } } } private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) LockSupport.unpark(s.thread); }
tryAcquire/tryRelease/tryAcquireShared/tryReleaseShared是要复写的方法,JUC衍生的一批线程通讯工具就是靠这个
cancelAcquire(node)的操做也是比较费解啊
1.取消node的线程
2.获取第一个waiteStatuse<=0的前驱pred,且把中间全部cancelled的节点所有置空,node.prev=pred
3.把node也给cancelled掉
4.node已经废了,若是node原本是tail那还要把tail给CAS成pred,predNext为空
5.若是pred是head,那就唤醒后继(就是倒着跑的那个unparkSuccessor)
6.除此之外把pred的ws改成SIGNAL(合适的时候就唤醒 ,由于此时还不是头的后继就不须要这么快唤醒)
7.废弃的node.next=node(注意此时也是一条长长的死循环链表,内部所有Cancelled),用于快速GC
暂时就这么多了,还有Node.EXCLUSIVE
的模式是怎么用的我有空查查,好累哦
volatile int value
+ CASAtomicStampedReference
使用Pair
来维护一个reference
和stamp
UNSAFE.compareAndSwapObject
ThreadPoolExecutor
ctl
提供两个信息,一个是workerCount
,另外一个是runState
,因为使用了位压缩因此线程数最多只能到达(2^29)-1
,文档中提到可能会换成AtomicLong,只是为了快而使用普通整型大小runState
提供5种状态,
RUNNING
: 接收且执行SHUTDOWN
: 不接收但执行队列中任务STOP
: 不接收也不执行TIDYING
: 全部任务中断,队列为0TERMINATED
: terminated()
完成HashSet<Worker> works
,其中Worker
继承自AQS
awaitTermination
由Condition提供支持CountDownLatch
经过Sync继承AQS实现tryAcquireShared
来实现共享锁CyclicBarrier
相对复杂,使用了ReentranceLock
和Condition
来组合,主要是用于signalAllfinal ReentrantLock lock = this.lock;
这里查阅的是ArrayBlockingQueue
很是保守的类,使用了Reentrance和Condition(notEmpty
|notFull
),任意操做几乎都上锁
Itrs
类做为Iterator
的代理,内部的Node
是WeakReference
类型,提供弱一致性(这里不是特别懂具体的操做。。)
put()
时lock
会lockInterruptibly()
,且会轮询while (count == items.length) notFull.await();
take()
时同理,但后面是轮询while (count == 0) notEmpty.await();
(话说内部的数组是循环数组啊)
感觉一下take的内部调用dequeue()
E x = (E) items[takeIndex]; items[takeIndex] = null; // effective Java中推荐的作法 if (++takeIndex == items.length) takeIndex = 0; count--; // 真正的个数 if (itrs != null) itrs.elementDequeued(); // itrs相关 notFull.signal(); return x;
state = 0 没锁, state != 0 上锁 state > 1 进入可重入状态 当state == 0时会执行setExclusiveOwnerThread
来释放资源
是否公平交由Sync使用策略模式调度,比方说NonfairSync
就是非公平的调度,此时若是调用lock.lock()
其实就是sync.lock()
,默认下是NonfairSync
看看关键的地方
static final class NonfairSync extends Sync { private static final long serialVersionUID = 7316153563782823691L; /** * Performs lock. Try immediate barge, backing up to normal * acquire on failure. */ final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); } protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); } } /** * Sync object for fair locks */ static final class FairSync extends Sync { private static final long serialVersionUID = -3000897897090466540L; final void lock() { acquire(1); } /** * Fair version of tryAcquire. Don't grant access unless * recursive call or no waiters or is first. */ protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } }
lock()
:能够看出公平调度是很是乖巧的交给AQS来得到资源,而非公平调度则是经过CAS来抢先得到,不行再给AQS
tryAcquire
:非公平经过CAS得到,而公平须要判断是否hasQueuedPredecessors()
ReentrantReadWriteLock
实现ReadWriteLock
接口,区别在于readLock
的lock()
实际是委托给sync
的acquireShared(1)
,而WriteLock
是sync.acquire(1)