论文阅读笔记《Meta-SGD: Learning to Learn Quickly for Few-Shot Learning》

核心思想   本文是在MAML的基础上进一步探索利用元学习实现无模型限制的小样本学习算法。思路与MAML和Meta-LSTM比较接近,首先MAML是利用元学习的方式获得一个较好的初始化参数,在此基础上只需要进行少量样本的微调训练就可以得到较好的结果,这种方式实现简单,但由于只对初始化参数进行学习,模型的容量有限。Meta-LSTM则是利用LSTM网络作为外层网络对内层网络的各项优化参数(学习率、衰
相关文章
相关标签/搜索