年度最佳【golang】GMP调度详解

Golang最大的特点能够说是协程(goroutine)了, 协程让原本很复杂的异步编程变得简单, 让程序员再也不须要面对回调地狱,
虽然如今引入了协程的语言愈来愈多, 但go中的协程仍然是实现的是最完全的.
这篇文章将经过分析golang的源代码来说解协程的实现原理.html

这个系列分析的golang源代码是Google官方的实现的1.9.2版本, 不适用于其余版本和gccgo等其余实现,
运行环境是Ubuntu 16.04 LTS 64bit.linux

核心概念

要理解协程的实现, 首先须要了解go中的三个很是重要的概念, 它们分别是G, MP,
没有看过golang源代码的可能会对它们感到陌生, 这三项是协程最主要的组成部分, 它们在golang的源代码中无处不在.git

G (goroutine)

G是goroutine的头文字, goroutine能够解释为受管理的轻量线程, goroutine使用go关键词建立.程序员

举例来讲, func main() { go other() }, 这段代码建立了两个goroutine,
一个是main, 另外一个是other, 注意main自己也是一个goroutine.github

goroutine的新建, 休眠, 恢复, 中止都受到go运行时的管理.
goroutine执行异步操做时会进入休眠状态, 待操做完成后再恢复, 无需占用系统线程,
goroutine新建或恢复时会添加到运行队列, 等待M取出并运行.golang

M (machine)

M是machine的头文字, 在当前版本的golang中等同于系统线程.
M能够运行两种代码:编程

  • go代码, 即goroutine, M运行go代码须要一个P
  • 原生代码, 例如阻塞的syscall, M运行原生代码不须要P

M会从运行队列中取出G, 而后运行G, 若是G运行完毕或者进入休眠状态, 则从运行队列中取出下一个G运行, 周而复始.
有时候G须要调用一些没法避免阻塞的原生代码, 这时M会释放持有的P并进入阻塞状态, 其余M会取得这个P并继续运行队列中的G.
go须要保证有足够的M能够运行G, 不让CPU闲着, 也须要保证M的数量不能过多.bootstrap

P (process)

P是process的头文字, 表明M运行G所须要的资源.
一些讲解协程的文章把P理解为cpu核心, 其实这是错误的.
虽然P的数量默认等于cpu核心数, 但能够经过环境变量GOMAXPROC修改, 在实际运行时P跟cpu核心并没有任何关联.windows

P也能够理解为控制go代码的并行度的机制,
若是P的数量等于1, 表明当前最多只能有一个线程(M)执行go代码,
若是P的数量等于2, 表明当前最多只能有两个线程(M)执行go代码.
执行原生代码的线程数量不受P控制.数组

由于同一时间只有一个线程(M)能够拥有P, P中的数据都是锁自由(lock free)的, 读写这些数据的效率会很是的高.

数据结构

在讲解协程的工做流程以前, 还须要理解一些内部的数据结构.

G的状态

  • 空闲中(_Gidle): 表示G刚刚新建, 仍未初始化
  • 待运行(_Grunnable): 表示G在运行队列中, 等待M取出并运行
  • 运行中(_Grunning): 表示M正在运行这个G, 这时候M会拥有一个P
  • 系统调用中(_Gsyscall): 表示M正在运行这个G发起的系统调用, 这时候M并不拥有P
  • 等待中(_Gwaiting): 表示G在等待某些条件完成, 这时候G不在运行也不在运行队列中(可能在channel的等待队列中)
  • 已停止(_Gdead): 表示G未被使用, 可能已执行完毕(并在freelist中等待下次复用)
  • 栈复制中(_Gcopystack): 表示G正在获取一个新的栈空间并把原来的内容复制过去(用于防止GC扫描)

M的状态

M并无像G和P同样的状态标记, 但能够认为一个M有如下的状态:

  • 自旋中(spinning): M正在从运行队列获取G, 这时候M会拥有一个P
  • 执行go代码中: M正在执行go代码, 这时候M会拥有一个P
  • 执行原生代码中: M正在执行原生代码或者阻塞的syscall, 这时M并不拥有P
  • 休眠中: M发现无待运行的G时会进入休眠, 并添加到空闲M链表中, 这时M并不拥有P

自旋中(spinning)这个状态很是重要, 是否须要唤醒或者建立新的M取决于当前自旋中的M的数量.

P的状态

  • 空闲中(_Pidle): 当M发现无待运行的G时会进入休眠, 这时M拥有的P会变为空闲并加到空闲P链表中
  • 运行中(_Prunning): 当M拥有了一个P后, 这个P的状态就会变为运行中, M运行G会使用这个P中的资源
  • 系统调用中(_Psyscall): 当go调用原生代码, 原生代码又反过来调用go代码时, 使用的P会变为此状态
  • GC中止中(_Pgcstop): 当gc中止了整个世界(STW)时, P会变为此状态
  • 已停止(_Pdead): 当P的数量在运行时改变, 且数量减小时多余的P会变为此状态

本地运行队列

在go中有多个运行队列能够保存待运行(_Grunnable)的G, 它们分别是各个P中的本地运行队列和全局运行队列.
入队待运行的G时会优先加到当前P的本地运行队列, M获取待运行的G时也会优先从拥有的P的本地运行队列获取,
本地运行队列入队和出队不须要使用线程锁.

本地运行队列有数量限制, 当数量达到256个时会入队到全局运行队列.
本地运行队列的数据结构是环形队列, 由一个256长度的数组和两个序号(head, tail)组成.

当M从P的本地运行队列获取G时, 若是发现本地队列为空会尝试从其余P盗取一半的G过来,
这个机制叫作Work Stealing, 详见后面的代码分析.

全局运行队列

全局运行队列保存在全局变量sched中, 全局运行队列入队和出队须要使用线程锁.
全局运行队列的数据结构是链表, 由两个指针(head, tail)组成.

空闲M链表

当M发现无待运行的G时会进入休眠, 并添加到空闲M链表中, 空闲M链表保存在全局变量sched.
进入休眠的M会等待一个信号量(m.park), 唤醒休眠的M会使用这个信号量.

go须要保证有足够的M能够运行G, 是经过这样的机制实现的:

  • 入队待运行的G后, 若是当前无自旋的M可是有空闲的P, 就唤醒或者新建一个M
  • 当M离开自旋状态并准备运行出队的G时, 若是当前无自旋的M可是有空闲的P, 就唤醒或者新建一个M
  • 当M离开自旋状态并准备休眠时, 会在离开自旋状态后再次检查全部运行队列, 若是有待运行的G则从新进入自旋状态

由于"入队待运行的G"和"M离开自旋状态"会同时进行, go会使用这样的检查顺序:

入队待运行的G => 内存屏障 => 检查当前自旋的M数量 => 唤醒或者新建一个M
减小当前自旋的M数量 => 内存屏障 => 检查全部运行队列是否有待运行的G => 休眠

这样能够保证不会出现待运行的G入队了, 也有空闲的资源P, 但无M去执行的状况.

空闲P链表

当P的本地运行队列中的全部G都运行完毕, 又不能从其余地方拿到G时,
拥有P的M会释放P并进入休眠状态, 释放的P会变为空闲状态并加到空闲P链表中, 空闲P链表保存在全局变量sched
下次待运行的G入队时若是发现有空闲的P, 可是又没有自旋中的M时会唤醒或者新建一个M, M会拥有这个P, P会从新变为运行中的状态.

工做流程(概览)

下图是协程可能出现的工做状态, 图中有4个P, 其中M1~M3正在运行G而且运行后会从拥有的P的运行队列继续获取G:

只看这张图可能有点不可思议实际的工做流程, 这里我根据实际的代码再讲解一遍:

package main

import (
    "fmt"
    "time"
)

func printNumber(from, to int, c chan int) {
    for x := from; x <= to; x++ {
        fmt.Printf("%d\n", x)
        time.Sleep(1 * time.Millisecond)
    }
    c <- 0
}

func main() {
    c := make(chan int, 3)
    go printNumber(1, 3, c)
    go printNumber(4, 6, c)
    _ = <- c
    _ = <- c
}

程序启动时会先建立一个G, 指向的是main(实际是runtime.main而不是main.main, 后面解释):
图中的虚线指的是G待运行或者开始运行的地址, 不是当前运行的地址.

M会取得这个G并运行:

这时main会建立一个新的channel, 并启动两个新的G:

接下来G: main会从channel获取数据, 由于获取不到, G会保存状态并变为等待中(_Gwaiting)并添加到channel的队列:

由于G: main保存了运行状态, 下次运行时将会从_ = <- c继续运行.
接下来M会从运行队列获取到G: printNumber并运行:

printNumber会打印数字, 完成后向channel写数据,
写数据时发现channel中有正在等待的G, 会把数据交给这个G, 把G变为待运行(_Grunnable)并从新放入运行队列:

接下来M会运行下一个G: printNumber, 由于建立channel时指定了大小为3的缓冲区, 能够直接把数据写入缓冲区而无需等待:

而后printNumber运行完毕, 运行队列中就只剩下G: main了:

最后M把G: main取出来运行, 会从上次中断的位置_ <- c继续运行:

第一个_ <- c的结果已经在前面设置过了, 这条语句会执行成功.
第二个_ <- c在获取时会发现channel中有已缓冲的0, 因而结果就是这个0, 不须要等待.
最后main执行完毕, 程序结束.

有人可能会好奇若是最后再加一个_ <- c会变成什么结果, 这时由于全部G都进入等待状态, go会检测出来并报告死锁:

fatal error: all goroutines are asleep - deadlock!

开始代码分析

关于概念的讲解到此结束, 从这里开始会分析go中的实现代码, 咱们须要先了解一些基础的内容.

汇编代码

从如下的go代码:

package main

import (
    "fmt"
    "time"
)

func printNumber(from, to int, c chan int) {
    for x := from; x <= to; x++ {
        fmt.Printf("%d\n", x)
        time.Sleep(1 * time.Millisecond)
    }
    c <- 0
}

func main() {
    c := make(chan int, 3)
    go printNumber(1, 3, c)
    go printNumber(4, 6, c)
    _, _ = <- c, <- c
}

能够生成如下的汇编代码(平台是linux x64, 使用的是默认选项, 即启用优化和内联):

(lldb) di -n main.main
hello`main.main:
hello[0x401190] <+0>:   movq   %fs:-0x8, %rcx
hello[0x401199] <+9>:   cmpq   0x10(%rcx), %rsp
hello[0x40119d] <+13>:  jbe    0x401291                  ; <+257> at hello.go:16
hello[0x4011a3] <+19>:  subq   $0x40, %rsp
hello[0x4011a7] <+23>:  leaq   0xb3632(%rip), %rbx       ; runtime.rodata + 38880
hello[0x4011ae] <+30>:  movq   %rbx, (%rsp)
hello[0x4011b2] <+34>:  movq   $0x3, 0x8(%rsp)
hello[0x4011bb] <+43>:  callq  0x4035a0                  ; runtime.makechan at chan.go:49
hello[0x4011c0] <+48>:  movq   0x10(%rsp), %rax
hello[0x4011c5] <+53>:  movq   $0x1, 0x10(%rsp)
hello[0x4011ce] <+62>:  movq   $0x3, 0x18(%rsp)
hello[0x4011d7] <+71>:  movq   %rax, 0x38(%rsp)
hello[0x4011dc] <+76>:  movq   %rax, 0x20(%rsp)
hello[0x4011e1] <+81>:  movl   $0x18, (%rsp)
hello[0x4011e8] <+88>:  leaq   0x129c29(%rip), %rax      ; main.printNumber.f
hello[0x4011ef] <+95>:  movq   %rax, 0x8(%rsp)
hello[0x4011f4] <+100>: callq  0x430cd0                  ; runtime.newproc at proc.go:2657
hello[0x4011f9] <+105>: movq   $0x4, 0x10(%rsp)
hello[0x401202] <+114>: movq   $0x6, 0x18(%rsp)
hello[0x40120b] <+123>: movq   0x38(%rsp), %rbx
hello[0x401210] <+128>: movq   %rbx, 0x20(%rsp)
hello[0x401215] <+133>: movl   $0x18, (%rsp)
hello[0x40121c] <+140>: leaq   0x129bf5(%rip), %rax      ; main.printNumber.f
hello[0x401223] <+147>: movq   %rax, 0x8(%rsp)
hello[0x401228] <+152>: callq  0x430cd0                  ; runtime.newproc at proc.go:2657
hello[0x40122d] <+157>: movq   $0x0, 0x30(%rsp)
hello[0x401236] <+166>: leaq   0xb35a3(%rip), %rbx       ; runtime.rodata + 38880
hello[0x40123d] <+173>: movq   %rbx, (%rsp)
hello[0x401241] <+177>: movq   0x38(%rsp), %rbx
hello[0x401246] <+182>: movq   %rbx, 0x8(%rsp)
hello[0x40124b] <+187>: leaq   0x30(%rsp), %rbx
hello[0x401250] <+192>: movq   %rbx, 0x10(%rsp)
hello[0x401255] <+197>: callq  0x4043c0                  ; runtime.chanrecv1 at chan.go:354
hello[0x40125a] <+202>: movq   $0x0, 0x28(%rsp)
hello[0x401263] <+211>: leaq   0xb3576(%rip), %rbx       ; runtime.rodata + 38880
hello[0x40126a] <+218>: movq   %rbx, (%rsp)
hello[0x40126e] <+222>: movq   0x38(%rsp), %rbx
hello[0x401273] <+227>: movq   %rbx, 0x8(%rsp)
hello[0x401278] <+232>: leaq   0x28(%rsp), %rbx
hello[0x40127d] <+237>: movq   %rbx, 0x10(%rsp)
hello[0x401282] <+242>: callq  0x4043c0                  ; runtime.chanrecv1 at chan.go:354
hello[0x401287] <+247>: movq   0x28(%rsp), %rbx
hello[0x40128c] <+252>: addq   $0x40, %rsp
hello[0x401290] <+256>: retq   
hello[0x401291] <+257>: callq  0x4538d0                  ; runtime.morestack_noctxt at asm_amd64.s:365
hello[0x401296] <+262>: jmp    0x401190                  ; <+0> at hello.go:16
hello[0x40129b] <+267>: int3   
hello[0x40129c] <+268>: int3   
hello[0x40129d] <+269>: int3   
hello[0x40129e] <+270>: int3   
hello[0x40129f] <+271>: int3   

(lldb) di -n main.printNumber
hello`main.printNumber:
hello[0x401000] <+0>:   movq   %fs:-0x8, %rcx
hello[0x401009] <+9>:   leaq   -0x8(%rsp), %rax
hello[0x40100e] <+14>:  cmpq   0x10(%rcx), %rax
hello[0x401012] <+18>:  jbe    0x401185                  ; <+389> at hello.go:8
hello[0x401018] <+24>:  subq   $0x88, %rsp
hello[0x40101f] <+31>:  xorps  %xmm0, %xmm0
hello[0x401022] <+34>:  movups %xmm0, 0x60(%rsp)
hello[0x401027] <+39>:  movq   0x90(%rsp), %rax
hello[0x40102f] <+47>:  movq   0x98(%rsp), %rbp
hello[0x401037] <+55>:  cmpq   %rbp, %rax
hello[0x40103a] <+58>:  jg     0x40112f                  ; <+303> at hello.go:13
hello[0x401040] <+64>:  movq   %rax, 0x40(%rsp)
hello[0x401045] <+69>:  movq   %rax, 0x48(%rsp)
hello[0x40104a] <+74>:  xorl   %ebx, %ebx
hello[0x40104c] <+76>:  movq   %rbx, 0x60(%rsp)
hello[0x401051] <+81>:  movq   %rbx, 0x68(%rsp)
hello[0x401056] <+86>:  leaq   0x60(%rsp), %rbx
hello[0x40105b] <+91>:  cmpq   $0x0, %rbx
hello[0x40105f] <+95>:  je     0x40117e                  ; <+382> at hello.go:10
hello[0x401065] <+101>: movq   $0x1, 0x78(%rsp)
hello[0x40106e] <+110>: movq   $0x1, 0x80(%rsp)
hello[0x40107a] <+122>: movq   %rbx, 0x70(%rsp)
hello[0x40107f] <+127>: leaq   0xb73fa(%rip), %rbx       ; runtime.rodata + 54400
hello[0x401086] <+134>: movq   %rbx, (%rsp)
hello[0x40108a] <+138>: leaq   0x48(%rsp), %rbx
hello[0x40108f] <+143>: movq   %rbx, 0x8(%rsp)
hello[0x401094] <+148>: movq   $0x0, 0x10(%rsp)
hello[0x40109d] <+157>: callq  0x40bb90                  ; runtime.convT2E at iface.go:128
hello[0x4010a2] <+162>: movq   0x18(%rsp), %rcx
hello[0x4010a7] <+167>: movq   0x20(%rsp), %rax
hello[0x4010ac] <+172>: movq   0x70(%rsp), %rbx
hello[0x4010b1] <+177>: movq   %rcx, 0x50(%rsp)
hello[0x4010b6] <+182>: movq   %rcx, (%rbx)
hello[0x4010b9] <+185>: movq   %rax, 0x58(%rsp)
hello[0x4010be] <+190>: cmpb   $0x0, 0x19ea1b(%rip)      ; time.initdone.
hello[0x4010c5] <+197>: jne    0x401167                  ; <+359> at hello.go:10
hello[0x4010cb] <+203>: movq   %rax, 0x8(%rbx)
hello[0x4010cf] <+207>: leaq   0xfb152(%rip), %rbx       ; go.string.* + 560
hello[0x4010d6] <+214>: movq   %rbx, (%rsp)
hello[0x4010da] <+218>: movq   $0x3, 0x8(%rsp)
hello[0x4010e3] <+227>: movq   0x70(%rsp), %rbx
hello[0x4010e8] <+232>: movq   %rbx, 0x10(%rsp)
hello[0x4010ed] <+237>: movq   0x78(%rsp), %rbx
hello[0x4010f2] <+242>: movq   %rbx, 0x18(%rsp)
hello[0x4010f7] <+247>: movq   0x80(%rsp), %rbx
hello[0x4010ff] <+255>: movq   %rbx, 0x20(%rsp)
hello[0x401104] <+260>: callq  0x45ad70                  ; fmt.Printf at print.go:196
hello[0x401109] <+265>: movq   $0xf4240, (%rsp)          ; imm = 0xF4240 
hello[0x401111] <+273>: callq  0x442a50                  ; time.Sleep at time.go:48
hello[0x401116] <+278>: movq   0x40(%rsp), %rax
hello[0x40111b] <+283>: incq   %rax
hello[0x40111e] <+286>: movq   0x98(%rsp), %rbp
hello[0x401126] <+294>: cmpq   %rbp, %rax
hello[0x401129] <+297>: jle    0x401040                  ; <+64> at hello.go:10
hello[0x40112f] <+303>: movq   $0x0, 0x48(%rsp)
hello[0x401138] <+312>: leaq   0xb36a1(%rip), %rbx       ; runtime.rodata + 38880
hello[0x40113f] <+319>: movq   %rbx, (%rsp)
hello[0x401143] <+323>: movq   0xa0(%rsp), %rbx
hello[0x40114b] <+331>: movq   %rbx, 0x8(%rsp)
hello[0x401150] <+336>: leaq   0x48(%rsp), %rbx
hello[0x401155] <+341>: movq   %rbx, 0x10(%rsp)
hello[0x40115a] <+346>: callq  0x403870                  ; runtime.chansend1 at chan.go:99
hello[0x40115f] <+351>: addq   $0x88, %rsp
hello[0x401166] <+358>: retq   
hello[0x401167] <+359>: leaq   0x8(%rbx), %r8
hello[0x40116b] <+363>: movq   %r8, (%rsp)
hello[0x40116f] <+367>: movq   %rax, 0x8(%rsp)
hello[0x401174] <+372>: callq  0x40f090                  ; runtime.writebarrierptr at mbarrier.go:129
hello[0x401179] <+377>: jmp    0x4010cf                  ; <+207> at hello.go:10
hello[0x40117e] <+382>: movl   %eax, (%rbx)
hello[0x401180] <+384>: jmp    0x401065                  ; <+101> at hello.go:10
hello[0x401185] <+389>: callq  0x4538d0                  ; runtime.morestack_noctxt at asm_amd64.s:365
hello[0x40118a] <+394>: jmp    0x401000                  ; <+0> at hello.go:8
hello[0x40118f] <+399>: int3

这些汇编代码如今看不懂也不要紧, 下面会从这里取出一部分来解释.

调用规范

不一样平台对于函数有不一样的调用规范.
例如32位经过栈传递参数, 经过eax寄存器传递返回值.
64位windows经过rcx, rdx, r8, r9传递前4个参数, 经过栈传递第5个开始的参数, 经过eax寄存器传递返回值.
64位linux, unix经过rdi, rsi, rdx, rcx, r8, r9传递前6个参数, 经过栈传递第7个开始的参数, 经过eax寄存器传递返回值.
go并不使用这些调用规范(除非涉及到与原生代码交互), go有一套独自的调用规范.

go的调用规范很是的简单, 全部参数都经过栈传递, 返回值也经过栈传递,
例如这样的函数:

type MyStruct struct { X int; P *int }
func someFunc(x int, s MyStruct) (int, MyStruct) { ... }

调用函数时的栈的内容以下:

能够看得出参数和返回值都从低位到高位排列, go函数能够有多个返回值的缘由也在于此. 由于返回值都经过栈传递了.
须要注意的这里的"返回地址"是x86和x64上的, arm的返回地址会经过LR寄存器保存, 内容会和这里的稍微不同.
另外注意的是和c不同, 传递构造体时整个构造体的内容都会复制到栈上, 若是构造体很大将会影响性能.

TLS

TLS的全称是Thread-local storage, 表明每一个线程的中的本地数据.
例如标准c中的errno就是一个典型的TLS变量, 每一个线程都有一个独自的errno, 写入它不会干扰到其余线程中的值.
go在实现协程时很是依赖TLS机制, 会用于获取系统线程中当前的G和G所属的M的实例.

由于go并不使用glibc, 操做TLS会使用系统原生的接口, 以linux x64为例,
go在新建M时会调用arch_prctl这个syscall设置FS寄存器的值为M.tls的地址,
运行中每一个M的FS寄存器都会指向它们对应的M实例的tls, linux内核调度线程时FS寄存器会跟着线程一块儿切换,
这样go代码只须要访问FS寄存器就能够存取线程本地的数据.

上面的汇编代码中的

hello[0x401000] <+0>:   movq   %fs:-0x8, %rcx

会把指向当前的G的指针从TLS移动到rcx寄存器中.

栈扩张

由于go中的协程是stackful coroutine, 每个goroutine都须要有本身的栈空间,
栈空间的内容在goroutine休眠时须要保留, 待休眠完成后恢复(这时整个调用树都是完整的).
这样就引出了一个问题, goroutine可能会同时存在不少个, 若是每个goroutine都预先分配一个足够的栈空间那么go就会使用过多的内存.

为了不这个问题, go在一开始只为goroutine分配一个很小的栈空间, 它的大小在当前版本是2K.
当函数发现栈空间不足时, 会申请一块新的栈空间并把原来的栈内容复制过去.

上面的汇编代码中的

hello[0x401000] <+0>:   movq   %fs:-0x8, %rcx
hello[0x401009] <+9>:   leaq   -0x8(%rsp), %rax
hello[0x40100e] <+14>:  cmpq   0x10(%rcx), %rax
hello[0x401012] <+18>:  jbe    0x401185                  ; <+389> at hello.go:8

会检查比较rsp减去必定值之后是否比g.stackguard0小, 若是小于等于则须要调到下面调用morestack_noctxt函数.
细心的可能会发现比较的值跟实际减去的值不一致, 这是由于stackguard0下面会预留一小部分空间, 编译时肯定不超过预留的空间能够省略比对.

写屏障(Write Barrier)

由于go支持并行GC, GC的扫描和go代码能够同时运行, 这样带来的问题是GC扫描的过程当中go代码有可能改变了对象的依赖树,
例如开始扫描时发现根对象A和B, B拥有C的指针, GC先扫描A, 而后B把C的指针交给A, GC再扫描B, 这时C就不会被扫描到.
为了不这个问题, go在GC的标记阶段会启用写屏障(Write Barrier).

启用了写屏障(Write Barrier)后, 当B把C的指针交给A时, GC会认为在这一轮的扫描中C的指针是存活的,
即便A可能会在稍后丢掉C, 那么C就在下一轮回收.
写屏障只针对指针启用, 并且只在GC的标记阶段启用, 平时会直接把值写入到目标地址:

关于写屏障的详细将在下一篇(GC篇)分析.
值得一提的是CoreCLR的GC也有写屏障的机制, 但做用跟这里的不同(用于标记跨代引用).

闭包(Closure)

闭包这个概念自己应该不须要解释, 咱们实际看一看go是如何实现闭包的:

package main

import (
    "fmt"
)

func executeFn(fn func() int) int {
    return fn();
}

func main() {
    a := 1
    b := 2
    c := executeFn(func() int {
        a += b
        return a
    })
    fmt.Printf("%d %d %d\n", a, b, c)
}

这段代码的输出结果是3 2 3, 熟悉go的应该不会感到意外.
main函数执行executeFn函数的汇编代码以下:

hello[0x4a096f] <+47>:  movq   $0x1, 0x40(%rsp)          ; 变量a等于1
hello[0x4a0978] <+56>:  leaq   0x151(%rip), %rax         ; 寄存器rax等于匿名函数main.main.func1的地址
hello[0x4a097f] <+63>:  movq   %rax, 0x60(%rsp)          ; 变量rsp+0x60等于匿名函数的地址
hello[0x4a0984] <+68>:  leaq   0x40(%rsp), %rax          ; 寄存器rax等于变量a的地址
hello[0x4a0989] <+73>:  movq   %rax, 0x68(%rsp)          ; 变量rsp+0x68等于变量a的地址
hello[0x4a098e] <+78>:  movq   $0x2, 0x70(%rsp)          ; 变量rsp+0x70等于2(变量b的值)
hello[0x4a0997] <+87>:  leaq   0x60(%rsp), %rax          ; 寄存器rax等于地址rsp+0x60
hello[0x4a099c] <+92>:  movq   %rax, (%rsp)              ; 第一个参数等于地址rsp+0x60
hello[0x4a09a0] <+96>:  callq  0x4a08f0                  ; 执行main.executeFn
hello[0x4a09a5] <+101>: movq   0x8(%rsp), %rax           ; 寄存器rax等于返回值

咱们能够看到传给executeFn的是一个指针, 指针指向的内容是[匿名函数的地址, 变量a的地址, 变量b的值].
变量a传地址的缘由是匿名函数中对a进行了修改, 须要反映到原来的a上.
executeFn函数执行闭包的汇编代码以下:

hello[0x4a08ff] <+15>: subq   $0x10, %rsp                ; 在栈上分配0x10的空间
hello[0x4a0903] <+19>: movq   %rbp, 0x8(%rsp)            ; 把原来的寄存器rbp移到变量rsp+0x8
hello[0x4a0908] <+24>: leaq   0x8(%rsp), %rbp            ; 把变量rsp+0x8的地址移到寄存器rbp
hello[0x4a090d] <+29>: movq   0x18(%rsp), %rdx           ; 把第一个参数(闭包)的指针移到寄存器rdx
hello[0x4a0912] <+34>: movq   (%rdx), %rax               ; 把闭包中函数的指针移到寄存器rax
hello[0x4a0915] <+37>: callq  *%rax                      ; 调用闭包中的函数
hello[0x4a0917] <+39>: movq   (%rsp), %rax               ; 把返回值移到寄存器rax
hello[0x4a091b] <+43>: movq   %rax, 0x20(%rsp)           ; 把寄存器rax移到返回值中(参数后面)
hello[0x4a0920] <+48>: movq   0x8(%rsp), %rbp            ; 把变量rsp+0x8的值恢复寄存器rbp(恢复原rbp)
hello[0x4a0925] <+53>: addq   $0x10, %rsp                ; 释放栈空间
hello[0x4a0929] <+57>: retq                              ; 从函数返回

能够看到调用闭包时参数并不经过栈传递, 而是经过寄存器rdx传递, 闭包的汇编代码以下:

hello[0x455660] <+0>:  movq   0x8(%rdx), %rax            ; 第一个参数移到寄存器rax(变量a的指针)
hello[0x455664] <+4>:  movq   (%rax), %rcx               ; 把寄存器rax指向的值移到寄存器rcx(变量a的值)
hello[0x455667] <+7>:  addq   0x10(%rdx), %rcx           ; 添加第二个参数到寄存器rcx(变量a的值+变量b的值)
hello[0x45566b] <+11>: movq   %rcx, (%rax)               ; 把寄存器rcx移到寄存器rax指向的值(相加的结果保存回变量a)
hello[0x45566e] <+14>: movq   %rcx, 0x8(%rsp)            ; 把寄存器rcx移到返回结果
hello[0x455673] <+19>: retq                              ; 从函数返回

闭包的传递能够总结以下:

  • 闭包的内容是[匿名函数的地址, 传给匿名函数的参数(不定长)...]
  • 传递闭包给其余函数时会传递指向"闭包的内容"的指针
  • 调用闭包时会把指向"闭包的内容"的指针放到寄存器rdx(在go内部这个指针称为"上下文")
  • 闭包会从寄存器rdx取出参数
  • 若是闭包修改了变量, 闭包中的参数会是指针而不是值, 修改时会修改到原来的位置上

闭包+goroutine

细心的可能会发如今上面的例子中, 闭包的内容在栈上, 若是不是直接调用executeFn而是go executeFn呢?
把上面的代码改成go executeFn(func() ...)能够生成如下的汇编代码:

hello[0x455611] <+33>:  leaq   0xb4a8(%rip), %rax        ; 寄存器rax等于类型信息
hello[0x455618] <+40>:  movq   %rax, (%rsp)              ; 第一个参数等于类型信息
hello[0x45561c] <+44>:  callq  0x40d910                  ; 调用runtime.newobject
hello[0x455621] <+49>:  movq   0x8(%rsp), %rax           ; 寄存器rax等于返回值(这里称为新对象a)
hello[0x455626] <+54>:  movq   %rax, 0x28(%rsp)          ; 变量rsp+0x28等于新对象a
hello[0x45562b] <+59>:  movq   $0x1, (%rax)              ; 新对象a的值等于1
hello[0x455632] <+66>:  leaq   0x136e7(%rip), %rcx       ; 寄存器rcx等于类型信息
hello[0x455639] <+73>:  movq   %rcx, (%rsp)              ; 第一个参数等于类型信息
hello[0x45563d] <+77>:  callq  0x40d910                  ; 调用runtime.newobject
hello[0x455642] <+82>:  movq   0x8(%rsp), %rax           ; 寄存器rax等于返回值(这里称为新对象fn)
hello[0x455647] <+87>:  leaq   0x82(%rip), %rcx          ; 寄存器rcx等于匿名函数main.main.func1的地址
hello[0x45564e] <+94>:  movq   %rcx, (%rax)              ; 新对象fn+0的值等于main.main.func1的地址
hello[0x455651] <+97>:  testb  (%rax), %al               ; 确保新对象fn不等于nil
hello[0x455653] <+99>:  movl   0x78397(%rip), %ecx       ; 寄存器ecx等于当前是否启用写屏障
hello[0x455659] <+105>: leaq   0x8(%rax), %rdx           ; 寄存器rdx等于新对象fn+0x8的地址
hello[0x45565d] <+109>: testl  %ecx, %ecx                ; 判断当前是否启用写屏障
hello[0x45565f] <+111>: jne    0x455699                  ; 启用写屏障时调用后面的逻辑
hello[0x455661] <+113>: movq   0x28(%rsp), %rcx          ; 寄存器rcx等于新对象a
hello[0x455666] <+118>: movq   %rcx, 0x8(%rax)           ; 设置新对象fn+0x8的值等于新对象a
hello[0x45566a] <+122>: movq   $0x2, 0x10(%rax)          ; 设置新对象fn+0x10的值等于2(变量b的值)
hello[0x455672] <+130>: movq   %rax, 0x10(%rsp)          ; 第三个参数等于新对象fn(额外参数)
hello[0x455677] <+135>: movl   $0x10, (%rsp)             ; 第一个参数等于0x10(函数+参数的大小)
hello[0x45567e] <+142>: leaq   0x22fb3(%rip), %rax       ; 第二个参数等于一个常量构造体的地址
hello[0x455685] <+149>: movq   %rax, 0x8(%rsp)           ; 这个构造体的类型是funcval, 值是executeFn的地址
hello[0x45568a] <+154>: callq  0x42e690                  ; 调用runtime.newproc建立新的goroutine

咱们能够看到goroutine+闭包的状况更复杂, 首先go会经过逃逸分析算出变量a和闭包会逃逸到外面,
这时go会在heap上分配变量a和闭包, 上面调用的两次newobject就是分别对变量a和闭包的分配.
在建立goroutine时, 首先会传入函数+参数的大小(上面是8+8=16), 而后传入函数+参数, 上面的参数即闭包的地址.

m0和g0

go中还有特殊的M和G, 它们是m0和g0.

m0是启动程序后的主线程, 这个m对应的实例会在全局变量m0中, 不须要在heap上分配,
m0负责执行初始化操做和启动第一个g, 在以后m0就和其余的m同样了.

g0是仅用于负责调度的G, g0不指向任何可执行的函数, 每一个m都会有一个本身的g0,
在调度或系统调用时会使用g0的栈空间, 全局变量的g0是m0的g0.

若是上面的内容都了解, 就能够开始看golang的源代码了.

程序初始化

go程序的入口点是runtime.rt0_go, 流程是:

  • 分配栈空间, 须要2个本地变量+2个函数参数, 而后向8对齐
  • 把传入的argc和argv保存到栈上
  • 更新g0中的stackguard的值, stackguard用于检测栈空间是否不足, 须要分配新的栈空间
  • 获取当前cpu的信息并保存到各个全局变量
  • 调用_cgo_init若是函数存在
  • 初始化当前线程的TLS, 设置FS寄存器为m0.tls+8(获取时会-8)
  • 测试TLS是否工做
  • 设置g0到TLS中, 表示当前的g是g0
  • 设置m0.g0 = g0
  • 设置g0.m = m0
  • 调用runtime.check作一些检查
  • 调用runtime.args保存传入的argc和argv到全局变量
  • 调用runtime.osinit根据系统执行不一样的初始化

    • 这里(linux x64)设置了全局变量ncpu等于cpu核心数量
  • 调用runtime.schedinit执行共同的初始化

    • 这里的处理比较多, 会初始化栈空间分配器, GC, 按cpu核心数量或GOMAXPROCS的值生成P等
    • 生成P的处理在procresize
  • 调用runtime.newproc建立一个新的goroutine, 指向的是runtime.main

    • runtime.newproc这个函数在建立普通的goroutine时也会使用, 在下面的"go的实现"中会详细讲解
  • 调用runtime·mstart启动m0

    • 启动后m0会不断从运行队列获取G并运行, runtime.mstart调用后不会返回
    • runtime.mstart这个函数是m的入口点(不只仅是m0), 在下面的"调度器的实现"中会详细讲解

第一个被调度的G会运行runtime.main, 流程是:

  • 标记主函数已调用, 设置mainStarted = true
  • 启动一个新的M执行sysmon函数, 这个函数会监控全局的状态并对运行时间过长的G进行抢占
  • 要求G必须在当前M(系统主线程)上执行
  • 调用runtime_init函数
  • 调用gcenable函数
  • 调用main.init函数, 若是函数存在
  • 再也不要求G必须在当前M上运行
  • 若是程序是做为c的类库编译的, 在这里返回
  • 调用main.main函数
  • 若是当前发生了panic, 则等待panic处理
  • 调用exit(0)退出程序

G M P的定义

G的定义在这里.
M的定义在这里.
P的定义在这里.

G里面比较重要的成员以下

  • stack: 当前g使用的栈空间, 有lo和hi两个成员
  • stackguard0: 检查栈空间是否足够的值, 低于这个值会扩张栈, 0是go代码使用的
  • stackguard1: 检查栈空间是否足够的值, 低于这个值会扩张栈, 1是原生代码使用的
  • m: 当前g对应的m
  • sched: g的调度数据, 当g中断时会保存当前的pc和rsp等值到这里, 恢复运行时会使用这里的值
  • atomicstatus: g的当前状态
  • schedlink: 下一个g, 当g在链表结构中会使用
  • preempt: g是否被抢占中
  • lockedm: g是否要求要回到这个M执行, 有的时候g中断了恢复会要求使用原来的M执行

M里面比较重要的成员以下

  • g0: 用于调度的特殊g, 调度和执行系统调用时会切换到这个g
  • curg: 当前运行的g
  • p: 当前拥有的P
  • nextp: 唤醒M时, M会拥有这个P
  • park: M休眠时使用的信号量, 唤醒M时会经过它唤醒
  • schedlink: 下一个m, 当m在链表结构中会使用
  • mcache: 分配内存时使用的本地分配器, 和p.mcache同样(拥有P时会复制过来)
  • lockedg: lockedm的对应值

P里面比较重要的成员以下

  • status: p的当前状态
  • link: 下一个p, 当p在链表结构中会使用
  • m: 拥有这个P的M
  • mcache: 分配内存时使用的本地分配器
  • runqhead: 本地运行队列的出队序号
  • runqtail: 本地运行队列的入队序号
  • runq: 本地运行队列的数组, 能够保存256个G
  • gfree: G的自由列表, 保存变为_Gdead后能够复用的G实例
  • gcBgMarkWorker: 后台GC的worker函数, 若是它存在M会优先执行它
  • gcw: GC的本地工做队列, 详细将在下一篇(GC篇)分析

go的实现

使用go命令建立goroutine时, go会把go命令编译为对runtime.newproc的调用, 堆栈的结构以下:

第一个参数是funcval + 额外参数的长度, 第二个参数是funcval, 后面的都是传递给goroutine中执行的函数的额外参数.
funcval的定义在这里, fn是指向函数机器代码的指针.
runtime.newproc的处理以下:

  • 计算额外参数的地址argp
  • 获取调用端的地址(返回地址)pc
  • 使用systemstack调用newproc1

systemstack会切换当前的g到g0, 而且使用g0的栈空间, 而后调用传入的函数, 再切换回原来的g和原来的栈空间.
切换到g0后会伪装返回地址是mstart, 这样traceback的时候能够在mstart中止.
这里传给systemstack的是一个闭包, 调用时会把闭包的地址放到寄存器rdx, 具体能够参考上面对闭包的分析.

runtime.newproc1的处理以下:

  • 调用getg获取当前的g, 会编译为读取FS寄存器(TLS), 这里会获取到g0
  • 设置g对应的m的locks++, 禁止抢占
  • 获取m拥有的p
  • 新建一个g

    • 首先调用gfget从p.gfree获取g, 若是以前有g被回收在这里就能够复用
    • 获取不到时调用malg分配一个g, 初始的栈空间大小是2K
    • 须要先设置g的状态为已停止(_Gdead), 这样gc不会去扫描这个g的未初始化的栈
  • 把参数复制到g的栈上
  • 把返回地址复制到g的栈上, 这里的返回地址是goexit, 表示调用完目标函数后会调用goexit
  • 设置g的调度数据(sched)

    • 设置sched.sp等于参数+返回地址后的rsp地址
    • 设置sched.pc等于目标函数的地址, 查看gostartcallfngostartcall
    • 设置sched.g等于g
  • 设置g的状态为待运行(_Grunnable)
  • 调用runqput把g放到运行队列

    • 首先随机把g放到p.runnext, 若是放到runnext则入队原来在runnext的g
    • 而后尝试把g放到P的"本地运行队列"
    • 若是本地运行队列满了则调用runqputslow把g放到"全局运行队列"

      • runqputslow会把本地运行队列中一半的g放到全局运行队列, 这样下次就能够继续用快速的本地运行队列了
  • 若是当前有空闲的P, 可是无自旋的M(nmspinning等于0), 而且主函数已执行则唤醒或新建一个M

    • 这一步很是重要, 用于保证当前有足够的M运行G, 具体请查看上面的"空闲M链表"
    • 唤醒或新建一个M会经过wakep函数

      • 首先交换nmspinning到1, 成功再继续, 多个线程同时执行wakep只有一个会继续
      • 调用startm函数

        • 调用pidleget从"空闲P链表"获取一个空闲的P
        • 调用mget从"空闲M链表"获取一个空闲的M
        • 若是没有空闲的M, 则调用newm新建一个M

          • newm会新建一个m的实例, m的实例包含一个g0, 而后调用newosproc动一个系统线程
          • newosproc会调用syscall clone建立一个新的线程
          • 线程建立后会设置TLS, 设置TLS中当前的g为g0, 而后执行mstart
        • 调用notewakeup(&mp.park)唤醒线程

建立goroutine的流程就这么多了, 接下来看看M是如何调度的.

调度器的实现

M启动时会调用mstart函数, m0在初始化后调用, 其余的的m在线程启动后调用.
mstart函数的处理以下:

  • 调用getg获取当前的g, 这里会获取到g0
  • 若是g未分配栈则从当前的栈空间(系统栈空间)上分配, 也就是说g0会使用系统栈空间
  • 调用mstart1函数

    • 调用gosave函数保存当前的状态到g0的调度数据中, 之后每次调度都会从这个栈地址开始
    • 调用asminit函数, 不作任何事情
    • 调用minit函数, 设置当前线程能够接收的信号(signal)
    • 调用schedule函数

调用schedule函数后就进入了调度循环, 整个流程能够简单总结为:

schedule函数获取g => [必要时休眠] => [唤醒后继续获取] => execute函数执行g => 执行后返回到goexit => 从新执行schedule函数

schedule函数的处理以下:

  • 若是当前GC须要中止整个世界(STW), 则调用stopm休眠当前的M
  • 若是M拥有的P中指定了须要在安全点运行的函数(P.runSafePointFn), 则运行它
  • 快速获取待运行的G, 如下处理若是有一个获取成功后面就不会继续获取

    • 若是当前GC正在标记阶段, 则查找有没有待运行的GC Worker, GC Worker也是一个G
    • 为了公平起见, 每61次调度从全局运行队列获取一次G, (一直从本地获取可能致使全局运行队列中的G不被运行)
    • 从P的本地运行队列中获取G, 调用runqget函数
  • 快速获取失败时, 调用findrunnable函数获取待运行的G, 会阻塞到获取成功为止

    • 若是当前GC须要中止整个世界(STW), 则调用stopm休眠当前的M
    • 若是M拥有的P中指定了须要在安全点运行的函数(P.runSafePointFn), 则运行它
    • 若是有析构器待运行则使用"运行析构器的G"
    • 从P的本地运行队列中获取G, 调用runqget函数
    • 从全局运行队列获取G, 调用globrunqget函数, 须要上锁
    • 从网络事件反应器获取G, 函数netpoll会获取哪些fd可读可写或已关闭, 而后返回等待fd相关事件的G
    • 若是获取不到G, 则执行Work Stealing

      • 调用runqsteal尝试从其余P的本地运行队列盗取一半的G
    • 若是仍是获取不到G, 就须要休眠M了, 接下来是休眠的步骤

      • 再次检查当前GC是否在标记阶段, 在则查找有没有待运行的GC Worker, GC Worker也是一个G
      • 再次检查若是当前GC须要中止整个世界, 或者P指定了须要再安全点运行的函数, 则跳到findrunnable的顶部重试
      • 再次检查全局运行队列中是否有G, 有则获取并返回
      • 释放M拥有的P, P会变为空闲(_Pidle)状态
      • 把P添加到"空闲P链表"中
      • 让M离开自旋状态, 这里的处理很是重要, 参考上面的"空闲M链表"
      • 首先减小表示当前自旋中的M的数量的全局变量nmspinning
      • 再次检查全部P的本地运行队列, 若是不为空则让M从新进入自旋状态, 并跳到findrunnable的顶部重试
      • 再次检查有没有待运行的GC Worker, 有则让M从新进入自旋状态, 并跳到findrunnable的顶部重试
      • 再次检查网络事件反应器是否有待运行的G, 这里对netpoll的调用会阻塞, 直到某个fd收到了事件
      • 若是最终仍是获取不到G, 调用stopm休眠当前的M
      • 唤醒后跳到findrunnable的顶部重试
  • 成功获取到一个待运行的G
  • 让M离开自旋状态, 调用resetspinning, 这里的处理和上面的不同

    • 若是当前有空闲的P, 可是无自旋的M(nmspinning等于0), 则唤醒或新建一个M
    • 上面离开自旋状态是为了休眠M, 因此会再次检查全部队列而后休眠
    • 这里离开自选状态是为了执行G, 因此会检查是否有空闲的P, 有则表示能够再开新的M执行G
  • 若是G要求回到指定的M(例如上面的runtime.main)

    • 调用startlockedm函数把G和P交给该M, 本身进入休眠
    • 从休眠唤醒后跳到schedule的顶部重试
  • 调用execute函数执行G

execute函数的处理以下:

  • 调用getg获取当前的g
  • 把G的状态由待运行(_Grunnable)改成运行中(_Grunning)
  • 设置G的stackguard, 栈空间不足时能够扩张
  • 增长P中记录的调度次数(对应上面的每61次优先获取一次全局运行队列)
  • 设置g.m.curg = g
  • 设置g.m = m
  • 调用gogo函数

    • 这个函数会根据g.sched中保存的状态恢复各个寄存器的值并继续运行g
    • 首先针对g.sched.ctxt调用写屏障(GC标记指针存活), ctxt中通常会保存指向[函数+参数]的指针
    • 设置TLS中的g为g.sched.g, 也就是g自身
    • 设置rsp寄存器为g.sched.rsp
    • 设置rax寄存器为g.sched.ret
    • 设置rdx寄存器为g.sched.ctxt (上下文)
    • 设置rbp寄存器为g.sched.rbp
    • 清空sched中保存的信息
    • 跳转到g.sched.pc
    • 由于前面建立goroutine的newproc1函数把返回地址设为了goexit, 函数运行完毕返回时将会调用goexit函数

g.sched.pc在G首次运行时会指向目标函数的第一条机器指令,
若是G被抢占或者等待资源而进入休眠, 在休眠前会保存状态到g.sched,
g.sched.pc会变为唤醒后须要继续执行的地址, "保存状态"的实现将在下面讲解.

目标函数执行完毕后会调用goexit函数, goexit函数会调用goexit1函数, goexit1函数会经过mcall调用goexit0函数.
mcall这个函数就是用于实现"保存状态"的, 处理以下:

  • 设置g.sched.pc等于当前的返回地址
  • 设置g.sched.sp等于寄存器rsp的值
  • 设置g.sched.g等于当前的g
  • 设置g.sched.bp等于寄存器rbp的值
  • 切换TLS中当前的g等于m.g0
  • 设置寄存器rsp等于g0.sched.sp, 使用g0的栈空间
  • 设置第一个参数为原来的g
  • 设置rdx寄存器为指向函数地址的指针(上下文)
  • 调用指定的函数, 不会返回

mcall这个函数保存当前的运行状态到g.sched, 而后切换到g0和g0的栈空间, 再调用指定的函数.
回到g0的栈空间这个步骤很是重要, 由于这个时候g已经中断, 继续使用g的栈空间且其余M唤醒了这个g将会产生灾难性的后果.
G在中断或者结束后都会经过mcall回到g0的栈空间继续调度, 从goexit调用的mcall的保存状态实际上是多余的, 由于G已经结束了.

goexit1函数会经过mcall调用goexit0函数, goexit0函数调用时已经回到了g0的栈空间, 处理以下:

  • 把G的状态由运行中(_Grunning)改成已停止(_Gdead)
  • 清空G的成员
  • 调用dropg函数解除M和G之间的关联
  • 调用gfput函数把G放到P的自由列表中, 下次建立G时能够复用
  • 调用schedule函数继续调度

G结束后回到schedule函数, 这样就结束了一个调度循环.
不只只有G结束会从新开始调度, G被抢占或者等待资源也会从新进行调度, 下面继续来看这两种状况.

抢占的实现

上面我提到了runtime.main会建立一个额外的M运行sysmon函数, 抢占就是在sysmon中实现的.
sysmon会进入一个无限循环, 第一轮回休眠20us, 以后每次休眠时间倍增, 最终每一轮都会休眠10ms.
sysmon中有netpool(获取fd事件), retake(抢占), forcegc(按时间强制执行gc), scavenge heap(释放自由列表中多余的项减小内存占用)等处理.

retake函数负责处理抢占, 流程是:

  • 枚举全部的P

    • 若是P在系统调用中(_Psyscall), 且通过了一次sysmon循环(20us~10ms), 则抢占这个P

      • 调用handoffp解除M和P之间的关联
    • 若是P在运行中(_Prunning), 且通过了一次sysmon循环而且G运行时间超过forcePreemptNS(10ms), 则抢占这个P

      • 调用preemptone函数

        • 设置g.preempt = true
        • 设置g.stackguard0 = stackPreempt

为何设置了stackguard就能够实现抢占?
由于这个值用于检查当前栈空间是否足够, go函数的开头会比对这个值判断是否须要扩张栈.
stackPreempt是一个特殊的常量, 它的值会比任何的栈地址都要大, 检查时必定会触发栈扩张.

栈扩张调用的是morestack_noctxt函数, morestack_noctxt函数清空rdx寄存器并调用morestack函数.
morestack函数会保存G的状态到g.sched, 切换到g0和g0的栈空间, 而后调用newstack函数.
newstack函数判断g.stackguard0等于stackPreempt, 就知道这是抢占触发的, 这时会再检查一遍是否要抢占:

  • 若是M被锁定(函数的本地变量中有P), 则跳过这一次的抢占并调用gogo函数继续运行G
  • 若是M正在分配内存, 则跳过这一次的抢占并调用gogo函数继续运行G
  • 若是M设置了当前不能抢占, 则跳过这一次的抢占并调用gogo函数继续运行G
  • 若是M的状态不是运行中, 则跳过这一次的抢占并调用gogo函数继续运行G

即便这一次抢占失败, 由于g.preempt等于true, runtime中的一些代码会从新设置stackPreempt以重试下一次的抢占.
若是判断能够抢占, 则继续判断是否GC引发的, 若是是则对G的栈空间执行标记处理(扫描根对象)而后继续运行,
若是不是GC引发的则调用gopreempt_m函数完成抢占.

gopreempt_m函数会调用goschedImpl函数, goschedImpl函数的流程是:

  • 把G的状态由运行中(_Grunnable)改成待运行(_Grunnable)
  • 调用dropg函数解除M和G之间的关联
  • 调用globrunqput把G放到全局运行队列
  • 调用schedule函数继续调度

由于全局运行队列的优先度比较低, 各个M会通过一段时间再去从新获取这个G执行,
抢占机制保证了不会有一个G长时间的运行致使其余G没法运行的状况发生.

channel的实现

在goroutine运行的过程当中, 有时候须要对资源进行等待, channel就是最典型的资源.
channel的数据定义在这里, 其中关键的成员以下:

  • qcount: 当前队列中的元素数量
  • dataqsiz: 队列能够容纳的元素数量, 若是为0表示这个channel无缓冲区
  • buf: 队列的缓冲区, 结构是环形队列
  • elemsize: 元素的大小
  • closed: 是否已关闭
  • elemtype: 元素的类型, 判断是否调用写屏障时使用
  • sendx: 发送元素的序号
  • recvx: 接收元素的序号
  • recvq: 当前等待从channel接收数据的G的链表(实际类型是sudog的链表)
  • sendq: 当前等待发送数据到channel的G的链表(实际类型是sudog的链表)
  • lock: 操做channel时使用的线程锁

发送数据到channel实际调用的是runtime.chansend1函数, chansend1函数调用了chansend函数, 流程是:

  • 检查channel.recvq是否有等待中的接收者的G

    • 若是有, 表示channel无缓冲区或者缓冲区为空
    • 调用send函数

      • 若是sudog.elem不等于nil, 调用sendDirect函数从发送者直接复制元素
      • 等待接收的sudog.elem是指向接收目标的内存的指针, 若是是接收目标是_则elem是nil, 能够省略复制
      • 等待发送的sudog.elem是指向来源目标的内存的指针
      • 复制后调用goready恢复发送者的G

        • 切换到g0调用ready函数, 调用完切换回来

          • 把G的状态由等待中(_Gwaiting)改成待运行(_Grunnable)
          • 把G放到P的本地运行队列
          • 若是当前有空闲的P, 可是无自旋的M(nmspinning等于0), 则唤醒或新建一个M
    • 从发送者拿到数据并唤醒了G后, 就能够从chansend返回了
  • 判断是否能够把元素放到缓冲区中

    • 若是缓冲区有空余的空间, 则把元素放到缓冲区并从chansend返回
  • 无缓冲区或缓冲区已经写满, 发送者的G须要等待

    • 获取当前的g
    • 新建一个sudog
    • 设置sudog.elem = 指向发送内存的指针
    • 设置sudog.g = g
    • 设置sudog.c = channel
    • 设置g.waiting = sudog
    • 把sudog放入channel.sendq
    • 调用goparkunlock函数

      • 调用gopark函数

        • 经过mcall函数调用park_m函数

          • mcall函数和上面说明的同样, 会把当前的状态保存到g.sched, 而后切换到g0和g0的栈空间并执行指定的函数
          • park_m函数首先把G的状态从运行中(_Grunning)改成等待中(_Gwaiting)
          • 而后调用dropg函数解除M和G之间的关联
          • 再调用传入的解锁函数, 这里的解锁函数会对解除channel.lock的锁定
          • 最后调用schedule函数继续调度
  • 从这里恢复表示已经成功发送或者channel已关闭

    • 检查sudog.param是否为nil, 若是为nil表示channel已关闭, 抛出panic
    • 不然释放sudog而后返回

从channel接收数据实际调用的是runtime.chanrecv1函数, chanrecv1函数调用了chanrecv函数, 流程是:

  • 检查channel.sendq中是否有等待中的发送者的G

    • 若是有, 表示channel无缓冲区或者缓冲区已满, 这两种状况须要分别处理(为了保证入出队顺序一致)
    • 调用recv函数

      • 若是无缓冲区, 调用recvDirect函数把元素直接复制给接收者
      • 若是有缓冲区表明缓冲区已满

        • 把队列中下一个要出队的元素直接复制给接收者
        • 把发送的元素复制到队列中刚才出队的位置
        • 这时候缓冲区仍然是满的, 可是发送序号和接收序号都会增长1
      • 复制后调用goready恢复接收者的G, 处理同上
    • 把数据交给接收者并唤醒了G后, 就能够从chanrecv返回了
  • 判断是否能够从缓冲区获取元素

    • 若是缓冲区有元素, 则直接取出该元素并从chanrecv返回
  • 无缓冲区或缓冲区无元素, 接收者的G须要等待

    • 获取当前的g
    • 新建一个sudog
    • 设置sudog.elem = 指向接收内存的指针
    • 设置sudog.g = g
    • 设置sudog.c = channel
    • 设置g.waiting = sudog
    • 把sudog放入channel.recvq
    • 调用goparkunlock函数, 处理同上
  • 从这里恢复表示已经成功接收或者channel已关闭

    • 检查sudog.param是否为nil, 若是为nil表示channel已关闭
    • 和发送不同的是接收不会抛panic, 会经过返回值通知channel已关闭
    • 释放sudog而后返回

关闭channel实际调用的是closechan函数, 流程是:

  • 设置channel.closed = 1
  • 枚举channel.recvq, 清零它们sudog.elem, 设置sudog.param = nil
  • 枚举channel.sendq, 设置sudog.elem = nil, 设置sudog.param = nil
  • 调用goready函数恢复全部接收者和发送者的G

能够看到若是G须要等待资源时,
会记录G的运行状态到g.sched, 而后把状态改成等待中(_Gwaiting), 再让当前的M继续运行其余G.
等待中的G保存在哪里, 何时恢复是等待的资源决定的, 上面对channel的等待会让G放到channel中的链表.

对网络资源的等待能够看netpoll相关的处理, netpoll在不一样系统中的处理都不同, 有兴趣的能够本身看看.

参考连接

https://github.com/golang/go
https://golang.org/s/go11sched
http://supertech.csail.mit.edu/papers/steal.pdf
https://docs.google.com/document/d/1ETuA2IOmnaQ4j81AtTGT40Y4_Jr6_IDASEKg0t0dBR8/edit#heading=h.x4kziklnb8fr
https://blog.altoros.com/golang-part-1-main-concepts-and-project-structure.html
https://blog.altoros.com/golang-internals-part-2-diving-into-the-go-compiler.html
https://blog.altoros.com/golang-internals-part-3-the-linker-and-object-files.html
https://blog.altoros.com/golang-part-4-object-files-and-function-metadata.html
https://blog.altoros.com/golang-internals-part-5-runtime-bootstrap-process.html
https://blog.altoros.com/golang-internals-part-6-bootstrapping-and-memory-allocator-initialization.html
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64
http://legendtkl.com/categories/golang
http://www.cnblogs.com/diegodu/p/5803202.html
https://www.douban.com/note/300631999/
http://morsmachine.dk/go-scheduler

legendtkl很早就已经开始写golang内部实现相关的文章了, 他的文章颇有参考价值, 建议同时阅读他写的内容. morsmachine写的针对协程的分析也建议参考. golang中的协程实现很是的清晰, 在这里要再次佩服google工程师的功力, 能够写出这样简单易懂的代码不容易.

相关文章
相关标签/搜索