理想状态下,咱们能够认为Kubernetes Pod是健壮的。可是,理想与现实的差距每每是很是大的。不少状况下,Pod中的容器可能会由于发生故障而死掉。Deployment等Controller会经过动态建立和销毁Pod来保证应用总体的健壮性。众所周知,每一个Pod都拥有本身的IP地址,当新的Controller用新的Pod替代发生故障的Pod时,咱们会发现,新的IP地址可能跟故障的Pod的IP地址可能不一致。此时,客户端如何访问这个服务呢?Kubernetes中的Service应运而生。html
Kubernetes Service 逻辑上表明了一组具备某些label关联的Pod,Service拥有本身的IP,这个IP是不变的。不管后端的Pod如何变化,Service都不会发生改变。建立YAML以下:node
apiVersion: apps/v1beta1 kind: Deployment metadata: name: httpd spec: replicas: 4 template: metadata: labels: run: httpd spec: containers: - name: httpd image: httpd ports: - containerPort: 80
配置命令:后端
[root@k8s-m ~]# kubectl apply -f Httpd-Deployment.yaml deployment.apps/httpd created
稍后片刻:api
[root@k8s-m ~]# kubectl get pod -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE httpd-79c4f99955-dbbx7 1/1 Running 0 7m32s 10.244.2.35 k8s-n2 <none> httpd-79c4f99955-djv44 1/1 Running 0 7m32s 10.244.1.101 k8s-n1 <none> httpd-79c4f99955-npqxz 1/1 Running 0 7m32s 10.244.1.102 k8s-n1 <none> httpd-79c4f99955-vkjk6 1/1 Running 0 7m32s 10.244.2.36 k8s-n2 <none> [root@k8s-m ~]# curl 10.244.2.35 <html><body><h1>It works!</h1></body></html> [root@k8s-m ~]# curl 10.244.2.36 <html><body><h1>It works!</h1></body></html> [root@k8s-m ~]# curl 10.244.1.101 <html><body><h1>It works!</h1></body></html> [root@k8s-m ~]# curl 10.244.1.102 <html><body><h1>It works!</h1></body></html>
建立YAML以下:浏览器
apiVersion: v1 kind: Service metadata: name: httpd-svc spec: selector: run: httpd ports: - protocol: TCP port: 8080 targetPort: 80
配置完成并观察:bash
[root@k8s-m ~]# kubectl apply -f Httpd-Service.yaml service/httpd-svc created [root@k8s-m ~]# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE httpd-svc ClusterIP 10.110.212.171 <none> 8080/TCP 14s kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 11d [root@k8s-m ~]# curl 10.110.212.171:8080 <html><body><h1>It works!</h1></body></html> [root@k8s-m ~]# kubectl describe service httpd-svc Name: httpd-svc Namespace: default Labels: <none> Annotations: kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"httpd-svc","namespace":"default"},"spec":{"ports":[{"port":8080,"... Selector: run=httpd Type: ClusterIP IP: 10.110.212.171 Port: <unset> 8080/TCP TargetPort: 80/TCP Endpoints: 10.244.1.101:80,10.244.1.102:80,10.244.2.35:80 + 1 more... Session Affinity: None Events: <none>
从以上内容中的Endpoints能够看出服务httpd-svc下面包含咱们指定的labels的Pod,cluster-ip经过iptables成功映射到Pod IP,成功。再经过iptables-save命令看一下相关的iptables规则。网络
[root@k8s-m ~]# iptables-save |grep "10.110.212.171" -A KUBE-SERVICES ! -s 10.244.0.0/16 -d 10.110.212.171/32 -p tcp -m comment --comment "default/httpd-svc: cluster IP" -m tcp --dport 8080 -j KUBE-MARK-MASQ -A KUBE-SERVICES -d 10.110.212.171/32 -p tcp -m comment --comment "default/httpd-svc: cluster IP" -m tcp --dport 8080 -j KUBE-SVC-RL3JAE4GN7VOGDGP [root@k8s-m ~]# iptables-save|grep -v 'default/httpd-svc'|grep 'KUBE-SVC-RL3JAE4GN7VOGDGP' :KUBE-SVC-RL3JAE4GN7VOGDGP - [0:0] -A KUBE-SVC-RL3JAE4GN7VOGDGP -m statistic --mode random --probability 0.25000000000 -j KUBE-SEP-R5YBMKYSG56R4KDU -A KUBE-SVC-RL3JAE4GN7VOGDGP -m statistic --mode random --probability 0.33332999982 -j KUBE-SEP-7G5ANBWSVVLRNZAH -A KUBE-SVC-RL3JAE4GN7VOGDGP -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-2PT6QZGNQHS4OL4I -A KUBE-SVC-RL3JAE4GN7VOGDGP -j KUBE-SEP-I4PXZ6UARQLLOV4E
咱们能够进一步查看相关的转发规则,此处省略。iptables将访问Service的流量转发到后端Pod,使用相似于轮询的的负载均衡策略。app
咱们的平台是经过kubeadm部署的,版本是v1.12.1,这个版本自带的dns相关组件是coredns。负载均衡
[root@k8s-m ~]# kubectl get deployment --namespace=kube-system NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE coredns 2 2 2 2 17d
经过建立一个临时的隔离环境来验证一下DNS是否生效。dom
[root@k8s-m ~]# kubectl run -it --rm busybox --image=busybox /bin/sh kubectl run --generator=deployment/apps.v1beta1 is DEPRECATED and will be removed in a future version. Use kubectl create instead. If you don't see a command prompt, try pressing enter. / # wget httpd-svc.default:8080 Connecting to httpd-svc.default:8080 (10.110.212.171:8080) index.html 100% |*******************************************************************************************************************************| 45 0:00:00 ETA / # cat index.html <html><body><h1>It works!</h1></body></html>
顺便提一下,在将来版本中,kubectl run可能再也不被支持,推荐使用kubectl create替代。此处偷了个懒,后续不建议如此操做。
在以上例子中,临时的隔离环境的namespace为default,与咱们新建的httpd-svc都在同一namespace内,httpd-svc.default的default能够省略。若是跨namespace访问的话,那么namespace是不能省略的。
一般状况下,咱们能够经过四种方式来访问Kubeenetes的Service,分别是ClusterIP,NodePort,Loadbalance,ExternalName。在此以前的实验都是基于ClusterIP的,集群内部的Node和Pod都可经过Cluster IP来访问Service。NodePort是经过集群节点的静态端口对外提供服务。
接下来咱们将以NodePort为例来进行实际演示。修改以后的Service的YAML以下:
apiVersion: v1 kind: Service metadata: name: httpd-svc spec: type: NodePort selector: run: httpd ports: - protocol: TCP nodePort: 31688 port: 8080 targetPort: 80
配置后观察:
[root@k8s-m ~]# kubectl apply -f Httpd-Service.yaml service/httpd-svc configured [root@k8s-m ~]# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE httpd-svc NodePort 10.110.212.171 <none> 8080:31688/TCP 117m kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 12d
Service httpd-svc的端口被映射到了主机的31688端口。YAML文件若是不指定nodePort的话,Kubernetes会在30000-32767范围内为Service分配一个端口。此刻咱们就能够经过浏览器来访问咱们的服务了。在与node网络互通的环境中,经过任意一个Node的IP:31688便可访问刚刚部署好的Service。